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Linear Models with

Spatially Distributed Data
Spatial Disturbances or Spatial Effects?

PATRICK DOREIAN

University of Pittsburgh

INTRODUCTION

This article deals with linear models for which data have been aggregated over
well-defined geographic areas. Such data may be generated by spatial processes,
and these may be represented in the form of spatial autocorrelation in the distur-
bance term or directly in the form of a spatial effect. This article details the
derivation of Ord’s (1975) MLEprocedurefor the spatial disturbances model and
contrasts it with this MLE procedure for the spatial effects model. These alterna-
tive model specifications and estimation procedures are then illustrated by a variety
of examples. These MLEprocedures for the spatial models are also contrasted with
conventional regression procedures (which ignored geographical space). If there is
spatial autocorrelation present, an MLE procedure is preferable.

When social processes are analyzed with conventional linear
models and the data used for estimating these models have been
aggregated for politically or administratively defined areas, for
example, states, counties, or census tracts, the geography of the
social process has been implicitly retained (Doreian, forthcom-
ing). Empirical examples where linear relations have been esti-
mated using data aggregated over well-defined geographical
areas that comprise some region can be found in Inverarity
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(1976), Ragin (1977), Chirot and Ragin (1975), Frisbie and Pos-
ton (1975), Matthews and Prothro (1963), Salamon and Van
Evera (1973), Kernal (1973), Capecchi and Galli (1969), Mitchell
(1969), and Doreian and Hummon (1976). Depending upon the
substantive context, the combination of a data form that retains

geographical space and the use of linear relations may lead to
methodological problems that have to be considered. Essentially,
the methodological problems hinge upon the issue of whether or
not observations for a variable at one point of geographical space
are interdependent with other observations for that variable at
other points in geographical space. If there is such an interdepen-
dency, then the conventional methods for estimating linear equa-
tions become problematic and, in such instances, alternative
procedures have to be sought. As the foregoing list of examples is
far from exhaustive, and there are, in the literature, demonstrated
instances of spatially distributed interdependencies (Ord, 1975;
Doreian, forthcoming), these methodological problems are not
hypothetical ones.

This article will address the following issues: (i) the representa-
tion of geographical space, (ii) determining whether or not spatial
interdependencies exist, (ii) formulating alternative linear models
that incorporate geographical space, and (iv) the estimation of
these alternative models. The basic starting point for the entire
discussion is the specification of the conventional linear popula-
tion regression function;

where

with E being multivariate normal. Given a set of observations on
Y, for example, y, and observations on the exogenous variables
and the specifications of the above model, the prime empirical
task is to estimate the vector of parameters, /3, together with esti-
mates of the standard errors of these estimates.
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REPRESENTING GEOGRAPHICAL SPACE

There are two broad representational strategies: measurements
of distances between geographical locations within a region and
partitioning the region into areas. Of course, these may be com-
bined when distances between points (e.g., centroids or adminis-
trative centers) representing the areas are used. In this article, the
focus is solely upon the partitioning strategy. Suppose a region,
R, is partitioned into N mutually exclusive (and exhaustive) areas
and that data exist for the N areas for all the variables of interest
in a model. Doreian and Hummon (1976: 117-125) provide a
general discussion of a matrix representation of geographical
space that was extended by Doreian (forthcoming).

Consider the relation of adjacency. It is straightforward to
determine if areas are adjacent to each other or not. Let S = [sly] be
an (N x N) matrix where s,, is one if area i is adjacent to areaj, and
zero otherwise. Throughout, the sn are taken to be zero. The
adjacency characteristics of R are completely specified in terms of
S. The entries of S are either zero or one. However, a more general
set of entries can be constructed where the entries can be viewed as

weights. For example, let s, be the row sum for the ith row of S.
Then a matrix, W = [w,], can be constructed where w, = s,, / s,. The
entries of W lie between zero and one (inclusive, although w,, =
one is only possible for a pair of mutually adjacent, but otherwise
disconnected, areas) and are proportions based upon the number
of other areas adjacent to a specific area. This particular weight-
ing scheme will be used throughout the article.’ In the case of the
Huk rebellion (Mitchell, 1969), considered below, control of an
area by the rebels or the government forces has immediate conse-
quences for adjacent areas. If military hardware and troops can
be moved into an occupied area, then this area can be used to gain
control of adjacent areas. There are many other social processes
that can spread through geographical space where adjacency is a
key spatial characteristic. In some cases, adjacency may be viewed
as a special case of accessibility, in which case accessibility can
then be used as the spatial characteristic. In the abstract, if a
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relation can be defined over the areas of a region, this relation can
be used to define a matrix of weights,2 and, in general, the spatial
structure of a region can be specified by some matrix, W, of
weights. The elements of W are nonzero for adjacent pairs of
areas and are zero otherwise. While it is emphasized that substan-
tive concerns must dictate the choice of the spatial property
represented, the following discussion assumes, simply, that some
spatial property can be represented by a (N x N) matrix W.

DETECTING SPATIAL INTERDEPENDENCIES

Among the assumptions contained in [2] it is one to the effect
that E is not autocorrelated; E, and ej are uncorrelated for i Oj. In
the time series context, (temporal) autocorrelation has been well
studied where there are procedures for detecting autocorrelation
and estimation strategies that take into account diagnosed auto-
correlation (see, for example, Box and Jenkins, 1970; Hibbs,
1974). Of course, Y and the Xs may also be autocorrelated.
Spatial autocorrelation of either a variable or a disturbance term
is the situation where the observations of variables or the values
of the disturbance term for different areas are not independent.
Cliff and Ord (1973) have dealt extensively with this problem.
Determining whether spatial autocorrelation exists is a technical
issue: Moran (1950) proposed a test statistic which was modified
by Dacey and generalized by Cliff and Ord (1973: 12) to

I = (not) (Y~WY/Y~Y) [3]

for a spatially distributed variable, y, where N is the number of
areas partitioning the region and T is the sum of the weights of
some appropriate weighting matrix. Cliff and Ord (1973: 13-15,
29-33) establish the distribution theory for I in order to test for
spatial autocorrelation by treating (I - E[I])/ (V[I])1/2 as a stand-
ardized normal deviate with E and V the expected value and
variance operators, respectively. They extend this ( 1973: 87-97) to
deal with residuals from a regression analysis. A brief account of
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this effort is contained in Appendix A. Using their formulae, it is
possible to test for spatial autocorrelation either in a variable of
interest or in a residual obtained from a regression analysis.
Where spatial autocorrelation is detected, it is necessary to deal
with the problems its presence entails. There are several ways of
doing this, and these are discussed in the following section.

LINEAR SPA TIA L EQ UA TIONS

There are two alternatives to equations 1 and 2 whereby geo-
graphical space can be incorporated into the specification of the
equation to be estimated.

The first alternative is the &dquo;spatial disturbances model,&dquo; and is
based directly upon the notion of spatial autocorrelation. The
specification of the spatial disturbances model is given in equa-
tions 4, and 5, and 6:

with v being multivariate normal. The empirical task is to esti-
mate p, /3, a2, and the standard errors of these estimates. Here, the
spatial autocorrelation is dealt with primarily as a technical prob-
lem : While there is a spatial process specified in [5], it is of

secondary interest to the appropriate estimation of [4].
The second alternative is labeled a &dquo;spatial effects model&dquo; and

is based on an argument that the values of Y are systematically
related to values of Y in adjacent areas (Ord, 1975; Mitchell, 1969;
Doreian, 1981). Here, spatial autocorrelation is dealt with both
substantively and as a technical problem. If there is a well-defined
spatial process for the endogenous variable, it can be included in
the model directly. On the basis of a substantively meaningful
specification of W, the following specification is used:
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where E is multivariate normal. The parameter, p, is a spatial
parameter. If it is significantly different from zero, a spatial
process can be said to be operating, otherwise, there is no spatial
process and the specification of equation 1 suffices.3 For the
spatial effects model also, the empirical task is to estimate p, /3, a2,
and the standard errors of these estimates.

Thus, one modeling choice facing the researcher is one among
the conventional regression specification, the spatial disturbances
model, and the spatial effects model. The choice is facilitated in
two ways. The procedures for detaching spatial autocorrelation
help decide whether or not the conventional regression specifica-
tion is appropriate. If no spatial autocorrelation is present, then
such a specification is warranted, but if spatial autocorrelation is
present, then one of the other two specifications should be
pursued.4 The choice between the spatial disturbances model and
the spatial effects model is primarily a substantive one.

MAXIMUM LIKELIHOOD PROCEDURES FOR
SPATIAL MODELS

Ord (1975) has provided MLE methods for both the spatial
disturbances and the spatial effect models. Given the terseness of
his presentation, Doreian (forthcoming) has provided derivations
of the statistical properties of, and sociological examples of, the
spatial effects model. This will be summarized after the following
similar treatment of the spatial disturbances model.

As the v are multivariate normal, the joint likelihood function
of the v is given by

where m = U2 to simplify notation. However, the v are not observed. The
relation between E and v is given by v = (I - pW)E = Ae where A = I - pW.
The joint likelihood function of the e is given by
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where I A is the jacobian of the variable change from the v to the
E, and the corresponding log-likelihood function is

Finally, as the Y are observed, rather than the e, the log-likelihood
function (given Y = y) to be maximized is

From [10],

Setting [11] to zero gives

~ 
A 

~ z

Thus, if p is known, ~3 is obtained readily from [12], which
amounts to a regression of Ay on AX. Minimizing [ 10J or [9] with
respect to (J) is also straightforward:

Setting [ 13] to zero gives

~ 
A 

~ ~ ~ .-
With /3 estimated, equation 14 provides (j.2, but both depend on p.
This parameter can be estimated by a direct search procedure.6

The search procedure is immensely simplified by Ord’s ob-
servation that the determinant of A is given by (Ord, 1975: 121)
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where X, are the eigenvalues of W. Substituting [ 14] back into [9]
indicates that

From this, it is clear that p is the value of p which minimizes

From [14], see Note 5,

,

Substituting into this equation for ~3 from [ 12] gives, upon simplifi-
cation,

where P = I - (AX) «AX)’ AXfl(AX)’. It follows, from substitut-
ing this into [16], that p is the value of p that minimizes

The direct search is made on the values of [ 17] for the values of p in
permitted range (p < 1 / ~max). With p found by the direct search
procedure, equations 12 and 14 can then be used to estimate /3 and
w, respectively.

Given the specification of the spatial disturbances model, it is
necessary to assess whether p is truly nonzero and to perform the
usual inference procedures on 0. The asymptotic variance-
covariance matrix, V, of the parameter estimates, is given by
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where 8r and 9s denotes pairs of parameters being estimated
(Kendall and Stuart, 1967: 55). The derivation of the asymptotic
variance-covariance matrix, V, is given in Appendix B. With the
definitions

and

where 0 is a column vector of zeros. Notice if either (i) p = 0 or (ii)
W = 0, the null matrix, then A = I and the specialized nonspatial
outcomes are reached: The spatial disturbances model is a proper
generalization of the conventional regression model.
The case for the spatial effects model can now be briefly

summarized (for more detail, see Doreian, forthcoming). From
equation 7, f = Ay - X/3 and the joint likelihood function for the y,
is given by

The log-likelihood function is given by
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which has to be minimized with respect to p, cu, and {3. Minimizing
f (y) with respect to {3 and w gives

and

as the estimating equations for fl and w, respectively. With these
&dquo;estimates&dquo; substituted back into [21],

(exactly as before). It is straightforward to show that p is the value
of p that minimizes

where M = I - X(X’X)X’ is an idempotent and symmetric matrix,
and this minimization is also done via a direct search procedure.
The variance-covariance matrix for these estimators is

where, as before,

and 0 is a column vector of zeros.

Thus, for all three alternatives of the linear model specification,
there are maximum-likelihood estimation equations and the
formulae for the variance-covariance matrices for these estimates.
We turn now to consider some of their empirical applications.
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EMPIRICAL EXAMPLES

A MODEL OF INSURGENCY

The first example concerns the Huk insurgency in the Philip-
pines studied by Mitchell (1969) and Doreian and Hummon
(1976). The list of exogenous variables involved is: the percentage
of the population speaking the Pampangan dialect, P; farmers as
a percentage of the population, FMP; owners as a percentage of
the population, OWN; percentage of cultivated land given to
sugar production, SGR; presence of mountains (a dummy),
MNT; and presence of swamps, SWP (another dummy variable).
The dependent variable of interest is the level of Huk control
operationalized as the percentage of barrios in a municipality
under the control of the Huks. Huk control was located, for the
most part, in those areas of central Luzon that were Pampangan
in the sense that this ethnic group was dominant in those areas
and that the majority of the population spoke that particular
dialect. According to Mitchell (1969), there has been a historical
cleavage between Pampangans and other ethnic groups. Further,
this cleavage persisted, as there was a strong element of mistrust
between the Pampangans and other neighboring ethnic groups.

In has been argued (see, for example, Mitchell, 1969), that
agrarian political insurgency movements are often associated
with certain kinds of economic conditions. Accordingly, certain
economic variables were included in the list of exogenous
variables that are concerned with land tenure and mode of

production. If there is merit in the argument claiming that the
desire for land by the peasantry is a motivating force in rebellion,
Mitchell observes, then, other things being equal, it will be

expected that barrios with few farmers owning their own land be
under Huk control. Farmers as a percentage of the population
and farm owners as a percentage of farmers are the land tenure
variables used in the model. The production variable is the

percentage of cultivated land given over to the production of
sugar, as this particular agricultural product was important for
the economy of the local area. Further, there was a preponder-
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ance of cane estates where there were many farm laborers and

migrant workers who, it could be argued, would develop
sympathy for an agrarian movement. In addition, some purely
geographical variables have been included in the light of the
argument that guerrilla activity is facilitated by geographical
terrain that is difficult for government forces to police. To this
end, a dummy variable representing mountainous terrain and a
dummy variable representing swamp land were included in the
model. Finally, Mitchell specified that the cultural variable, the
percentage of the population speaking the Pampangan dialect, is
used multiplicatively with the remaining exogenous variables.

In addition to specifying a relation between the level of Huk
control and various cultural, economic, and geographical vari-
ables, it is possible to argue that the level of Huk control in one
area is interdependent with the level of Huk control in adjacent
areas (see Mitchell, 1969). Since this is the case, a model that has a
spatial effect built into it, namely equation 7, would be an
appropriate specification where the matrix, W, is the matrix of
weights constructed from the adjacency matrix. If there is no such
spatial interdependency as far as the level of Huk control is

concerned, then the straightforward conventional population
regression function, equation 1, would be specified. The former
is the spatial effects model, and the latter is the nonspatial model.
Of course, a preliminary step is to examine whether or not the

dependent variable of interest is spatially autocorrelated. When
the spatial autocorrelation statistic, I, was calculated for these
data, it was found to have a value of 0.76, and when the standard
normal deviate was constructed from this, according to the
formula in Appendix A, its value was found to be 7.81; this
indicates that the level of Huk control is a spatially autocorrelated
variable. Moreover, a regression of Huk control on the (multi-
plicative) exogenous variables specified in the model does not
remove this spatial autocorrelation. Seemingly, then, the specifi-
cation of the spatial effects equation is appropriate.

Table 1 shows the estimated equations for the nonspatial
model, the spatial effects model, and also, for purposes of

comparison, the spatial disturbances model. Each model has the
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coefficients of interest estimated together with the estimated
standard errors for these coefficients and an indication of the

quality of fit of the model. In order to assess whether or not
individual coefficients are significant, a two-tailed test has been
employed with a significance level arbitrarily set at 0.05.8 Several
things are immediately apparent from a comparison of the first
two panels of Table 1. First, all coefficient estimates for the
nonspatial model are greater in magnitude than the correspond-
ing estimated coefficients for the spatial effects model. Second, all
estimates of the standards errors of the coefficients are higher for
the nonspatial model than for the spatial effects model. This
suggests serious deficiencies in the nonspatial model in the form
of upward biases (in magnitude) in the coefficient estimates and in
the estimates of the standard errors of these coefficient estimates.
In this particular case, the two biases appear to be partially
offsetting as far as inferential purposes are concerned, but
nevertheless, they do point to serious deficiencies in the nonspa-
tial model. When the two estimated forms are compared with
inferential purposes in mind, it is clear that they lead to different
inferences concerning those exogenous variables that are deemed
important for predicting the level of insurgent control. Specifi-
cally, both the sugar cane production variable and the presence of
swamp land (both defined interactively with the Pampangan
dialect variable) are deemed to be significant for the nonspatial
model, whereas they are not significant for the spatial effects
model. To the extent that there is a spatial effect operative, the use
of the nonspatial model also leads to serious inferential problems.
On this basis, it appears that the use of a nonspatial model is
inppropriate for spatially distributed data where spatial auto-
correlation is present, and there are good arguments for using a
spatial effects model.

In this particular example, it is clear that a spatial effects model
is warranted. However, it is also instructive to examine the
outcome of a specification of a spatial disturbances model. If we
examine the coefficient estimates, we again see that the nonspatial
model has coefficient estimates that are inflated relative to the
coefficient estimates for a model that incorporates a spatial
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disturbance term (see panel 3 of Table 1). When the estimates of
the standard errors for the coefficient estimates are examined,
there is not the same clear pattern that was observed for the

spatial effects specification. Four of the standard error estimates
are lower for the spatial disturbances model; two are higher than
those for the nonspatial model. When inferential concerns are
addressed, there is one difference that emerges from a comparison
of the nonspatial model with the model that has a spatially
autocorrelated disturbance term. The variable depicting the

presence of swamp land is deemed to be significant under the non-
spatial model whereas it is not under the spatial disturbances
model. When the spatial effects model and the spatial distur-
bances model are compared, there is a single inferential difference
concerning the production variable of sugar cane production.
However, the choice between a spatial effects model and a spatial
disturbances model is not one that is readily settled by examining
the estimation outcomes from the two specifications. Rather, the
choice concerning the way in which spatial autocorrelation is to
be dealt with is made on substantive grounds. In this particular
context, the spatial effects model seems more compelling than the
spatial disturbances model. However, the comparison between
the two in this context is instructive insofar as it shows that the
two different strategies for dealing with spatial autocorrelation
can also lead to different inferences concerning those exogenous
variables that are deemed important for predicting the levels of
the endogenous variable of interest.

DETERMINANTS OF PRESIDENTIAL
ELECTORAL SUPPORT

The next set of examples is taken from a project exploring at the
macro level the determinants of presidential voting behavior in
the parishes of Louisiana.9 Here, the dependent variable of
interest is the percentage of the voting electorate who support
particular Democratic presidential candidates.10
Howard and Grenier (1976) have, by means of factorial

ecology, delineated several dimensions that are important charac-
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teristics of Louisiana. Three particularly salient dimensions are:
percentage black, B; percentage Catholic, C; and percentage
urban, U. Each of these variables, in the aggregate, can be seen as
predictors of electoral turnout and partisan electoral behavior in
presidential elections. The overwhelming majority of the elec-
torate is, and has been, registered with the Democratic Party.
Until 1944, voting for the Democrats was seen as voting for the
status quo and, in particular, white supremacy (Howard, 1971).
With the adoption, in the national Democratic platform, of a
mild, embryonic civil-rights plank, there was a good deal of
defection from the Democratic ranks and support for the States’

Rights candidacy of Thurmond. It is reasonable to ask whether
the concentration of blacks in particular parishes (counties) is a
predicting factor of the support (or lack of support) for particular
candidates. The distinction has often been noted between North-
ern Louisiana and Southern Louisiana where one of the charac-
teristics is given by the variable, percentage Catholic. The
Southern parishes are characterized by a higher proportion of the
Cajun population, whereas the Northern parishes have a prepon-
derance of people with a Protestant affiliation. Again, if religion
is an important characteristic differentiating the parishes, it is
reasonable to ask whether or not this also is a predicting
characteristic for presidential voting support. Throughout the
period from the 1930s through to the 1970s, Louisiana underwent
a period of transformation from a predominantly agricultural
state to one characterized by higher levels of industrialization and
urbanization. Again, it is reasonable to ask whether, in the face of
this long-term trend in the changing composition of the popula-
tion, percentage urban is a predictor of partisan political behav-
ior. Another exogenous variable considered in these examples is a
measure of black political equality which attempts to operation-
alize the extent to which blacks are enfranchised in relation to
their numbers in a particular parish. There are further predictors
that can be included, but the examples in this article will focus
only on these four exogenous variables.

Given that 1948 saw the high water mark of support for the
Democrat party, at least among white voters; that some presi-

 at UNIV OF PITTSBURGH on June 29, 2011smr.sagepub.comDownloaded from 

http://smr.sagepub.com/


45

dential elections were characterized by the presence of States’
Rights candidates (for example, Thurmond in 1948 and Wallace
in 1968); that religion became salient in the Kennedy candidacy;
that there was, in 1965, the Civil Rights Voting Act and a
consequent jump in black enfranchisement; it is unreasonable to
expect that the parameterization of a model linking voting
support for particular candidates to the exogenous variable
would be fixed through time. Thus, it is not appropriate to use
any of the pooled cross section and time-series procedures that
would assume homogeneity of parameterization throughout the
period for which cross sections were being pooled: It is much
more reasonable to examine the elections individually and try to
chart the parameter changes in the estimates through time. If this
course of action is adopted, it becomes important that the
specification of the models and the estimation procedures used
lead to parameter estimates that are as precise as possible. In the
light of the results for the Huk rebellion, it is clear that the

nonspatial model is likely to produce parameter estimates that are
inflated and also estimates of the standard errors of these

parameter estimates that are inflated. It cannot be assured that
the amount of inflation in these estimates would be fixed from

period to period, and any comparison that we might make is
compromised by imprecision in the estimating procedure.

While it is possible to estimate a model linking candidate
support to the exogenous predictors for each of the elections, for
example, from 1936-1976, the number of these empirical exam-
ples would be excessive for this article; therefore, only a few
examples are considered here. At issue, however, is the precision
of the estimates and also the inferences concerning which of the
exogenous variables are predictors of presidential candidate
support for particular elections.
As before, we are faced with a choice among three models: the

conventional regression formulation that ignores space (the non-
spatial model), the spatial effects model, and the spatial distur-
bances model. If either the intended variable of interest or the
disturbance term are spatially autocorrelated, then the nonspatial
model is not appropriate.&dquo; However, in contrast to the Huk
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example, it is not immediately clear which of the two spatial
models is more appropriate. In the case of predicting support for
particular presidential candidates in elections in the state of
Louisiana, there is room for debate whether there is a spatial
effects process operative or whether the spatial autocorrelation
ought to be dealt with as a technical problem through the
specification of the spatial disturbances model. There are few, if
any, attempts on the the part of the leaders of one parish to
impose an electoral outcome on adjacent parishes, but it is still
possible that there is a spatial process operative.l2 On (weak)
grounds, I would specify the spatial effects model in preference to
the spatial disturbances model. In the following examples, all
three specifications will be presented in order that their estimated
outcomes may be compared.

The first election considered for purposes of illustration is the
1948 election, the results of which, for each of the possible
specifications, are shown in Table 2. When the nonspatial model
and the spatial effects model are compared, there are similar
patterns of the Huk example as far as the magnitude of the
estimates is concerned. All of the estimated coefficients for the

nonspatial model are inflated relative to the coefficients for the
spatial effects model-as are the estimates of the standard errors
of the coefficient estimates. If elections were being compared
across years with respect to the parameter estimates, this inflation
could be important and would be grounds for preferring the
spatial-effects model. As far as inference is concerned, the two
specifications would lead the researcher to the same inference
concerning the exogenous variables that are predictive of Demo-
cratic presidential support in 1948. It appears that the percentage
black in a parish is negatively related to the percentage supporting
the Democratic candidatel3, whereas the level of black political
equality is positively related to Democratic support. Neither the
variables of percentage Catholic nor percentage urban have

predictive utility for this election. When the spatial effects model
and spatial disturbances models are compared, there is one sharp
difference concerning the inference that is made about the

exogenous variables that are predictors of the support for the
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Democratic presidential candidate in 1948. According to the
spatial effects model, percentage black is an important predictor,
whereas percentage black is not an important predictor of
democratic presidential support under the spatial disturbances
model. This substantive difference can be used as further evidence
to support the preferences for the spatial effects specification as
opposed to the spatial disturbances specification. 14 Given that
this was the 1948 election, that the electorate was overwhelmingly
white, and that at the national level the democratic party platform
had a mild civil rights plank in it and was seen as betraying the
white supremacy ideology, it is reasonable to predict that a sizable
black community in a parish would act as a trigger to mobilize a
white vote against the Democratic candidates and in favor of the
States’ Rights (white supremacist) candidacy of Thurmond.

This particular difference emphasizes that the choice between
the spatial effects model and the spatial disturbances model is
likely to entail more than the simple choice regarding the way in
which the problem of spatial autocorrelation is handled. That is,
while the arguments for or against either of the two spatial
representations should rest primarily on substantive arguments,
it has to be recognized that the models will not, in their estimated
form, always be the same with respect to the inclusion of

exogenous variables. The particular choice of the spatial repre-
sentation does have consequence for the results stemming from
the estimation of either spatial model.

The next example is furnished by the 1952 election, the results
of which are shown in Table 3. There are no important differences
with respect to the magnitude of the estimated coefficients; nor is
there a great difference between the estimates of the standard
errors of the estimated coefficients. The one point at which a
difference emerges concerns whether the spatial effects model or
the spatial disturbances model is the better approach in dealing
with spatial autocorrelation. On the basis of testing for auto-
correlation, both the dependent variable of interest and the
residual left after ordinary least squares regression show spatial
autocorrelation. When the spatial effects model is estimated, it is
clear that the spatial coefficient for that model is not significant,
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whereas the estimated spatial coefficient for the spatial distur-
bances model is significant. This outcome poses a dilemma for the
researcher who opted, on theoretical grounds, for the spatial
effects model. It would appear that, from the estimation of such a
model, the incorporation of the spatial effects term is not

warranted, and this would point the researcher back to the
nonspatial model. On the other hand, when the spatial autocor-
relation is treated as a technical problem, the spatial disturbances
model seems an adequate way of dealing with this particular
problem, and the spatial disturbances model appears preferable.
One resolution of this dilemma would be to fit a model that has
both a spatial effects term and a spatial disturbances term
simultaneously. This is an agenda item pointed to by this

example, and work on developing the estimation procedure for
such a combined spatial effects and spatial disturbances model is
currently under way.
As far as inference is concerned, each of the alternative

specifications does point to the same substantive outcomes.
Given that the spatial term is not significant for the spatial effects
model and that p for the spatial disturbances model is not very
large, this is not surprising. All of the specifications agree that
percentage black and percentage Catholic in a parish are not
predictors of the level of support for the Democratic presidential
candidate, whereas percent urban and the measure of black
political equality are predictor of that support. As far as a
comparison with the preceding elections is concerned, it would
appear that for the first Eisenhower election percentage black is
no longer a predictor of Democratic candidate support whereas
percentage urban now is (with a negative coefficient). While black
political equality remains a predictor of democratic presidential
candidates support, the absolute values of the coefficient have
declined during the period from the 1948 election to the 1952
election.
When the 1956 election was examined, the only difference that

emerged was, again, between the spatial effects model and the
spatial disturbances model. Here, the spatial coefficient for the
spatial effects model was significant whereas the estimate of the
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spatial parameter for the spatial disturbances model was not. This
would suggest that, in this instance, the spatial effects approach,
both on substantive and methodological grounds, was the better
way of dealing with spatial autocorrelation. The final example
included is that of the 1960 election, in which no differences
appear at all between the various specifications of a linear model.
The results of the estimation of these alternative specifications are
shown in Table 4. In comparison to the previous two elections, we
now have percentage Catholic as a major predictor of Democratic
presidential support. Given that Kennedy was the Democratic
candidate, was Catholic, and, moreover, that religion became an
issue in the 1960 presidential election, it is not surprising that the
parishes with high percentages of Catholics in them gave solid
support to the Catholic presidential candidate. Both percentage
urban and percentage black political equality remain as predic-
tors of the level of Democratic presidential candidate support.
The magnitude of the coefficient for the percentage urban area
remains, as before, negative, whereas the value of the coefficient
for black political equality is somewhat higher than in the two
preceding elections in the 1950s. Given that both the spatial
effects and the spatial disturbances are clearly present, this
would-be model could be improved by the incorporation of
spatial effects and spatial disturbances simultaneously.

DISCUSSION

Given that a linear relationship between an endogenous
variable and a set of exogenous variables is specified and that
either the endogenous variable of interest or a disturbance term is
spatially autocorrelated, some form of a spatial model should be
considered. The nonspatial model estimated by conventional
regression procedures is not a reliable representation and should
be avoided when there is a spatial phenomenon to be analyzed.
Whether the researcher chooses the spatial effects model, the
spatial disturbances model, or a combination of the two is a
theoretical decision. Further, as the examples have indicated,
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inferences concerning the specific roles of exogenous variables
may vary according to the spatial model chosen.

There was no clear-cut pattern concerning the numerical
differences between the estimates for the spatial disturbances and
the spatial effects models. The extent to which the two types of
spatial phenomena, and their representation, can be confused can
be explored via Monte Carlo simulations: Data can be generated
under either regime for variations in p and a’ and estimated
according to each specification to see the extent to which the
models can be genuinely distinguished in an empirical context.
This is a topic for further investigation. Another avenue of
investigation raised in the article is the examination of a

specification that includes both a spatial effect and spatial
autocorrelation. The estimation of such a model is likely to be
quite complex, and it is currently being pursued.

It is clear that for linear models employing spatially distributed
data, attention must be paid to the spatial characteristics of the
phenomena being studied. Various strategies have been proposed
for doing this together with maximum likelihood methods that
should prove of increasing value in the analysis of geographically
distributed social phenomena.

APPENDIX A

TESTING FOR SPATIAL AUTOCORRELATION

W is an appropriately defined matrix of spatial weights. Define
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The test statistic, I, defined by Cliff and Ord (1973) for testing the spatial
autocorrelation of a variable, y, is

where N is the number of areas and

For this situation, E[I] = - I/N and V[I] = (N2S1 - NS2 + 3T2)/N(N -
1)T2, and the standardized normal deviate can be constructed.

Suppose a residual, Ê, has been returned from a (nonspatial) regression
analysis. In order to test for spatial autocorrelation of E, the following test
statistic is defined:

Cliff and Ord (1973) derive expression for E [I] and V [I] in order to con-
struct a standardized normal deviate. Define

Then,

where there are K exogenous variables (including the column of l’s for the
intercept). The expression for
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APPENDIX B

DERIVATION OF THE VARIANCE~COVARIANCE

MATRIX OF THE MLE ESTIMATORS

In order to obtain V, it is necessary to obtain the second partial deriva-
tives of k(y) with respect to the parameters being estimated. First, some
preliminary remarks: (i) &eth;E/&eth;{3 = X; (ii) for general quadratics 8(h’j3)/3j3 = h;
and tr(g’Sh) = tr(Shg’) for any matrix S and (conformable) vectors g and h.

From 9

This can be taken in two steps:
(i) from the form of IAI given in 15,

These two results are substituted into [B. I ] to give

Equations 11, 13, and B.2 are the basis for obtaining the required second

partial derivatives.
From 11 I

From 13;
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From B.2;

We now take the expected values of these second derivatives:
From B.4

From B.7
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Substituting these expected values into [18] and noting the negative sign
gives the variance-covariance matrix of the coefficient estimates:

NOTES

1. Other weighting schemes can be considered (see Mitchell 1969; Doreian, 1981).
For example, if bij is the length of the common border shared by areas i and j and if bij
denotes the total perimeter of area i, then a matrix of weights can be defined by wij = bij/ bii
for i&ne;j together with wii = 0.

2. There are, potentially, a very large number of weighting schemes and spatial
characteristics that can be selected for representation. Some will be more compelling and
fruitful than others. The plethora of choices has led some researchers (for example, Arora
& Brown, 1977) to abandon this approach to the specification of geographical space. Such
an abandonment is premature (see Doreian, forthcoming).
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3. If y is not spatially autocorrelated, the spatial-effects model would not be explored
further. By the same argument, if &isin; is obtained from estimating [1] by conventional
regression procedures and is found not to be spatially autocorrelated, then the spatial
disturbances model would not be explored further. In both cases, the model expression in
[1] and [2] would suffice.

4. The problem of dealing simultaneously with spatial effects and spatial disturban-
ces is much more complex and is not tackled in this paper.

5. Of course, &isin; is not observed, but, as &epsilon;^ = Y - X&beta;, equation 14 is equivalent to

which is obtained from [10] rather than [9].
6. Ord (1975: 122) suggests an iterative procedure for obtaining p which fared badly

both for real data and artificially generated data.
7. This measure, FIT = ryy2, is used to give some indication of the fit of the model. It

should not be interpreted as a measure of variance explained. A better measure is being
pursued.

8. In cases where more than one coefficient is (separately) nonsignificant, the models
were reestimated with variables dropped singly. The resulting estimated model was always
the same as that obtained from dropping nonsignificant variables multiply. The analog of
the partial joint F-test for these spatial models has not yet been developed.

9. The author, in collaboration with Charles Grenier, is pursuing this analysis of
Lousiana political dynamics in which geographic space is included. The final models are
unlikely to include the specific equations contained herein. These equations are being used
to illustrate the strategies and problems of estimating models with spatial distributed data.

10. In general, models can be formulated to account for the support for the Demo-
cratic candidate, the Republican candidate, and States’ Rights candidates. In this article,
our attention is confined only to some equations that predict the level of support for the
Democratic candidate.

11. The dependent variables considered here are all spatially autocorrelated as indi-
cated by the value of I, and regression of them on their corresponding exogenous variables
does not completely remove this spatial autocorrelation.

12. It could be further argued that a spatial effects process might be more likely in an
era before mass television and radio communication and would fade through time as the
mass media became a more uniform source of information across geographic regions.

13. Note, however, that we cannot make statements concerning individual voting
behavior. One interpretation consistent with the negative coefficient of percentage black is
that, when the size of the black population was higher, the white vote was mobilized
against the Democratic candidate, since, at the national level, the Democratic platform
mildly disavowed white supremacist sentiment, and this was seen as a betrayal. Given the
virtual exclusion of blacks from the electorate, this is not an unreasonable interpretation,
but the results do not directly support it. By way of contrast; for the 1968 and 1972
elections, the coefficient for this variable was strongly positive. With both blacks and
whites in the electorate, such a simple interpretation as above is no longer possible,
although there is evidence that the black vote was mobilized for Humphrey (against
Wallace, particularly) in 1968 and for McGovern in 1972.

14. This is said with some caution, however, as I have earlier remarked that, in general,
the choice between the two spatial models is not based on the exogenous variables. In this
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instance there is a good deal of evidence that B should be in the model regardless of the
specifics of its formulation. Clearly, the more we know of a process, the more we would be
able to do this, but then, the inferential issues being discussed would be less important.
Conversely, the less we know of a process, the more important is the correct representation
of the spatial properties.
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