This article presents a model that is a natural generalization of both the spatial
effects linear model and the linear model with spatial disturbances. Maximum
likelihood methods are presented that provide estimates of the parameters of the
model together with the asymptotic variance-covariance matrix of the estimates.
Numerical illustrations of these methods are provided.
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his article is concerned with the formulation of, and

estimation of, a certain class of linear models for social
phenomena distributed across geographical space. These models
have their origin in the classical population regression functions
of regression analysis, and have a certain data structure. Essen-
tially, the data for these models are obtained for a set of areas
that comprise some region, with each area being construed as a
unit of analysis. Examples of such phenomena are provided by
Mitchell’s (1969) analysis of the Huk rebellion in the Philippines,
Chirot and Ragin’s (1975) analysis of the Romanian peasant
rebellion of 1907, Salamon and Van Evera’s (1973) analysis of
black political participation in Mississippi, and Frisbie and
Poston’s (1975) analysis of sustenance organization. Further
examples are discussed by Doreian (1981).

When regression analysis is employed, variables character-
izing the areas are used to account for the variation of an en-
dogenous variable across the areas comprising a region. Among
the assumptions underlying the use of such a method is one to
the effect that the observations are independent. However, with
social phenomena distributed in geographical space, this assump-
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tion may be questioned insofar as the value of the endogenous
variable in a particular area is dependent upon the values of
that variable in adjacent or nearby areas. This interdependency
must be included in the specification of a model of the phe-
nomenon being considered. Ord (1975) presented a general
method of doing this through the specification of and use of a
matrix W that represents the spatial structure of a region.
Essentially, this matrix represents some relation of interest de-
fined over the areas that make up the region. Within Ord’s
general approach, there are distinct models that can be con-
sidered. Doreian (1981) discusses the spatial effects model
(and includes also a discussion of the specification of W). The
spatial disturbances model (Doreian, 1980) is another model
within Ord’s approach. This article presents a model that is a
natural extension of both models together with an estimation
strategy for estimating that model.

A LINEAR MODEL WITH A SPATIAL EFFECT
AND A SPATIAL DISTURBANCE TERM

The specification of a model where the value of the endogenous
variable for one area of geographic space is interdependent with
the values of that variable for some other areas making up the
overall region is the spatial effects model:

Y=pWiY+XB+e (1]

where W, is an appropriate matrix of weights; p; is the spatial
effects parameter; X is a matrix of observations for the exogenous
variables (including a column of 1s for the intercept); Bis a vector
of parameters to be estimated, and ¢ is a disturbance term. If
there are N areas making up the region of interest, then W, is
an (N x N) matrix. Both Y and € are (N x 1) vectors. If there are
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(K - 1) exogenous variables, then X is an (N x K) matrix (includ-
ing a column of s for the intercept term), and Bisa (K x 1) vector
of parameters. If ¢ . IN(O, 021), then we have the model studied
extensively by Ord (1975) and Doreian (1981). However, ¢ may
also be spatially autoregressive:

€= pWae + v 21
with
Evv’ = o’ [3]

and v an (N x 1) vector and multivariate normal. The matrix
W, is another matrix of weights (although W, = W, is possible),
and p; is a spatial parameter for the disturbance term.' If p; =0,
then we have the spatial disturbance model studied by Ord
(1975) and by Doreian (1980).

This article establishes a maximum likelihood (ML) procedure
for estimating the parameters of this model having both a spatial
effects term and a spatial disturbances term together with the
variance-covariance matrix for these estimators. The proba-
bilistic information is contained in the assumption concerning
the distribution of ». However, v is unobserved. In order to
obtain the ML procedure, it is necessary to perform two trans-
formations (from » to € and from e to Y, given Y = y),” so as to
have an expression for the likelihood function for the observed
y. The likelihood function for the v is given by:

1 V2 1
L(») = (ZZ)) exp %— (3(:) v'v%

where w = ¢ to simplify notation. Two matrices are useful for
expressing the probability distribution of the observed y rather
thanv: Aj=1-pWyand A, =1- p2W,. Firstp = (1 -2 W2) e= Aze
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and, from[1],e=(1- pWi)y - XB = A1y - XB. When the v are
transformed to the ¢ we have:

1 \V2 1
L(e) = |A2| <5£> exp 3—— (2-(;> (Aze)'(A2€)

1 V2 1
= A, <H)> exp 3— (?5) €A A€

where [A,| is the Jacobian of the transformation. Finally,
from the transformation of the € to y, given Y = y for a set
of observations,

(5]

1 N/2
Ly)=1A,11A,| {—
)= 1A, | 1|<2m>

1 At
exp §— S (ALY = X8 Ay Ay (A Y — XB) [6]

where |A;| is the Jacobian of the transformation from the e to
the y. The log-likelihood function® is:

N 1 L
L(y) = const — (—2—)1nw - %% [(Ay — XB)'AS A, (Ay — XB)]
+1n [A, +1n [A,| [7a]

Equivalently (on multiplying out the expression in square pa-
rentheses):

N 1 ! ! ’
L(y) = const — (—2—> Inw — EYR [y A A A ALY

— 28X A AL ALY + X AL A, XB]+ InlA, | +1njA, | [7b]

Downloaded from smr.sagepub.com at UNIV OF PITTSBURGH on August 28, 2011


http://smr.sagepub.com/

Doreian /| MAXIMUM LIKELIHOOD METHODS 247
At some points it will be convenient to use:
_ N 1 o
L(y) = const — > Inw — EY™ [e'AyA €]
+1n]A,| +1nlA, | [7c]
in the derivations as ¢'A5A,e is equal to the term in square

parentheses in [7b] and in [7a]. We turn now to establishing
the estimation equations.

From [7b] :
aL _ 1 1t Pal
3 T 3 2K AAAY T XA A X (8]

Setting [8] to zero gives:
A ) —1rat
B=(X'A5A,X) T X'AYA Ay [9]

If p; and p, were known, then B can be regarded as the general-
ized least squares (GLS) estimator:

B=(X;Q—1X)—1Xrg—lyl
where 7' = AjA, and y, = A, y. From [7c]:

oL N 1 N
— = ——+ — [€A)Aje] [10]
ow 200 94,2

Setting [10] to zero gives:

2L b
0" =w= ¥(€A2A2€) [11]

In terms of the model parameters and observables, this is:

1

&= [VATAL A A Y — XA AL Ay +EXAYA XB] [12]
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While [9] and [12] provide estimating equations for 8 and &, they
depend on p; and p; which are, in general, unknown.

There are two strategies for obtaining estimates of p; and p,.
The less computationally burdensome procedure is described
here.* In order to minimize L(y) with respect to p, and p,, the
equations for 9L/9p; =0 and OL/9p: = 0 need to be solved. The
left-hand side of these equations is given by [A.2] and [A.5]
(see Appendix). Note that these equations cannot be solved
directly as they contain e¢ and w. In an empirical situation,
¢ = A1y - X8 and, in principle, can be substituted for € in [A.5]
and used in [11] for . However, this expression contains A; and
B, neither of which are known until p; and p; have been estimated.
Thus, expressions for these terms have to be substituted into
[A.2] and [A.5] also. What results are two highly nonlinear
equations that must be both set to zero and solved numerically.’
One method of solving these equations numerically is the
Newton-Raphson procedure (see Nielsen, 1968: 205-213 for a
discussion of this procedure applied to systems of two nonlinear
equations). With p; and p, found numerically, then 8 is found
from [9] and @ from [12].

The asymptotic variance-covariance matrix, V, for the pa-
rameter estimates is given by:

2
o°L
-1
=_F 13
A s

where 6, and 6, denote pairs of parameters being estimated
(Kendall and Stuart). The algebraic derivation of the right-hand
side of [13] is provided in the Appendix. Using the notation

B -1, -1
B1 *A2W1A1 Az

_ -1
Bz *WzAz

_ —1 ’ ’ -1
C —A1 W1A2A2W1A1

V, =W, + W, —2p,WiW,
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D =A" A W ovoAT!
Thy A WiVha,
N
_ 2 2
o El N =pyA)
and
) 2
Qy = “Z/Ji (1 _pzﬂi)

the variance-covariance matrix for this model is:

V(6. pyhy )=
-1
N2 wuB, wurB, 0’
2 ) VIR At ! '

LB wtB B wrXexs Wb (WX AYAW AL XBY | [14]
w

wtrB, Wb W (BB, a,) o

0 WX'AYALW A Xp 0 WX'AYA, X

As a check on this derivation, it should be noted that if p; =0 and
if the second row and the column are deleted (which correspond
to p1), then [14] reduces to the asymptotic variance-covariance
matrix for the spatial disturbances model considered by Ord
(1975) and Doreian (1980). Similarly, if p, = 0 and if the third
row and the third column of [14] are deleted, then [14] reduces
to the asymptotic variance-covariance matrix for the spatial
effects models considered by Ord (1975) and by Doreian (1981).
Similarly, the estimation equations reduce to their corresponding
ML estimation equations when both p; = 0 and p, = 0.

In summary, the ML estimation procedure detailed herein is
one that is performed in stages. Although the derivation of the
ML procedure first established the estimation equations for 8
and o (analogously to OLS), and then moved to the estimation
of p1 and g2, the ML procedure moves in reverse. First, the non-
linear equations obtained from setting [A.2] and [A.5] to zero
are solved numerically.® Then, with p; and p; established, [9] and
[11] are used to provide estimates of 8 and w respectively. Finally,
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the variance-covariance matrix for the estimators is obtained
from [14]. We turn now to some examples.

EXAMPLES

The numerical examples considered here are based on arti-
ficially constructed data.” In each case, data were generated
according to the regime specified in [1], [2], and [3]. At issue is
whether or not the estimation strategies detailed in the preceding
section return the parameters used to generate the data (within
tolerances due to sampling variability).

The first data sets conform to the example of Louisiana politics
described in Doreian (1981). The dependent variable of interest
is the proportion of voters in a parish (county) voting for the
Democratic presidential candidate in 1960. Howard and Grenier
(1978), by means of factorial ecology, delineated several dimen-
sions that are important characteristics for describing the
parishes of Louisiana. The data on three of these, percentage
Black (Xi), percentage Catholic (X;), and percentage urban
(X3) are, together with data for a measure of Black political
equality (Xs4), used as exogenous variables to generate an en-
dogenous variable. The parameters used to generate the data are
(respectively) 0, 0.25, 0.2, and 0.3 together with 15.0 for the
intercept.®

The W matrices are constructed as follows. The matrix W,
simply expresses contiguity of areas. Let S; = [sj] be a matrix
whose entries are 0 or 1. The entry s; = 1 if and only if area i is
adjacent to area j and si = 0 for all i. Then wj = s;j/s;. where s;. is
the i"™ row sum of S;. The rationale for this representation is
discussed fully by Doreian (1981). The construction of W, is
suggested by Howard’s (1971) typology of parish types. The
typology is based on a variety of geographic, geological, eco-
nomic, social, and political criteria.” A matrix S, = [s;] can be
constructed where s = 1 if and only if i and j belong to the same
parish type. W, = [wy] where w; = s;j/s;. with s;. being the i"" row
sum of S,. The notion here is that parishes belonging to the same
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TABLE 1
Parameter Estimates and Standard Errors using MILE Procedures
for Various Generating Parameter Configurations

Parameters (01, 92) Generating Values
for 8
Exogenous Generating
Variables Values (.6, .5) (.6, 0) ©, .5) .3, .3)
Ol - 0.64 0.63 0,06 0.35
(0.03)* (0.03) (0.07) (0.05)
92 -= 0.42 -0.06 0.41 0.21
(0.13) (0.22 (0.14) (0.17)
B 15.0 7.98 8.57 9.25 8.70
(3.72) (3.07) (3.52) (3.34)
Bl 0 0.05 0.06 0.05 0.06
(0.04) (0.04) (0.04) (0,04)
By 0.25 0.22 0.22 0.23 0.23
(0.03 (0.03) (0.03) (0.03)
83 0.20 0.22 0.23 0.22 0.22
(0.02) (0.02) (0.02) (0.02)
BA 0.03 0.32 0.32 0.33 0.33
(0.03) (0.03) (0.03) (0.03)
w 16.00 14.73 13.80 15.09 14.37
(2.65) (2.45) (2.71) (2.53)

*Figures in parentheses are standard errors.

parish type behave similarly with respect to the endogenous vari-
able of interest. In the following, several pairs of (p1, p2) were used
to generate data: these were (.6, .5); (.6, 0); (0, .5); and (.3, .3). The
estimation outcomes are shown in Table 1.

In terms of estimating pi, the estimation procedure works well.
In all cases, pi is slightly above the generating value, but the
largest discrepancy is 0.06 and all discrepancies are well within
the estimated sampling variability. The estimated standard errors
for p; are all small. The procedure appears to be less adequate
when we turn to the estimates of p. In all cases, the returned
estimate of p, was lower than the value used to generate the data
with the maximum discrepancy being 0.09. Again, these lie within
the estimated sampling variability. However, for p; the estimated
standard errors are considerably higher than those that corre-
spond to p;. For the case where p; =0.3 and p2 = 0.3, the inferential
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decision concerning the presence of spatial autocorrelation in
the disturbance term would be to omit it.'° Even if an estimate of
0.3 was returned, this decision would stand. It may be that, for
this kind of model, a value of p, of around 0.3 may be the smallest
that can be detected and dealt with. This suggests that values
smaller than this may be ignored, as is the case for first order
autoregressive processes (Hibbs, 1974). It should be noted that a
generating value of p; = 0 was detected that would lead the
researcher to a spatial disturbances model, and in the run for
p2 = 0, the absence of spatial autocorrelation in the disturbance
term was detected that would lead the researcher to the spatial
effects model.

We consider now the estimates of the parameters contained
in B. The terms other than the intercept are considered first. The
coefficient B; used in generating the data was zero and the
estimates of this coefficient in the four runs are either 0.05 or 0.06.
With an estimated standard error of 0.04 in each case, the null
hypothesis that 8; = 0 could not be rejected. The zero coefficient
used in generating the data was detected. For all of the non-
zero B used in generating the data, the returned estimates are
close to their corresponding generating values. The estimated
standard errors in each case are small (and identical to two
places of decimals across all runs). Thus, as far as estimating
the regression parameters, other than the intercept, the proposed
ML procedure appears to work very well.

The results are less happy as far as the intercept is concerned.
In all cases the returned estimates are low compared to the
generating value. It is worth noting, however, that all estimates
of the intercept are at least twice their corresponding standard
errors: in none of these cases would the researcher be lead to
infer a zero intercept. Nonetheless, at face value, there does
appear to be a downward bias in the estimate of the intercept.
If the “true” intercept is relatively large, there appears to be no
danger that the researcher would erroneously conclude that it
takes a zero value. If the precise value of the intercept is of
interest, there is a limitation in the procedure being proposed.
Monte Carlo studies will demonstrate whether or not there is

Downloaded from smr.sagepub.com at UNIV OF PITTSBURGH on August 28, 2011


http://smr.sagepub.com/

Doreian /| MAXIMUM LIKELIHOOD METHODS 253

truly a persistent downward bias in the estimate of the intercept,
and if so, they will provide some guidance as to its magnitude."’
If the “true” value of the intercept is small, there would appear
to be some danger of its value being inferred as being zero.

The estimates of w, the variance of the disturbance term, are
also all quite reasonable. A crude measure of fit is 1 minus the
ratio of the variance of the residual over the variance of the
endogenous variable (Ord, 1975). Given the interdependencies
among the variables, this is not a proportion of variance ex-
plained measure, although it is bounded by 0 and 1. It provides
some guidance concerning the fit of the model. For the examples
in Table | this measure is, reading from left to right, 0.99, 0.99,
0.96, and 0.98, respectively. Of course, given the nature of the
constructed data these measures are not surprising. A full Monte
Carlo study would indicate more clearly the adequacy of the
procedure. However, it does appear that the estimation pro-
cedure proposed herein is a feasible one for dealing with both
spatial effects and spatial disturbances in a linear model.

When the original body of data that suggested these simulated
data was considered (Doreian, 1981), the estimation procedure
for p; and p; returned g, = 0.31 and p, =-0.14. When the standard
errors were estimated, the inferential decision concerning p, was
that it was not significantly different from 0. This would lead the
researcher back to the spatial effects model already estimated
by Doreian (1981). By itself, this is encouraging. There is another
view of the negative estimate of p,. From the substantive context
it is clear that both p; and p, should be bounded by the interval
(0, 1). Both should be positive and bounded above by the re-
ciprocal of the maximum eigenvalue of their corresponding W,
as indicated earlier. A solution outside the permitted range may
be interpreted as a diagnostic that the data do not conform to
the kind of model specified here. In this case, p; is outside the
permitted range which would again lead the researcher back to
the spatial effects model.

The foregoing examples all involved data generated with dis-
tinct W; and W, matrices. There is no reason, in principle, why
these must be distinct and the following examples uses W = W,.
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TABLE 2
Parameter Estimates and Standard Errors for Data with W, = W,

Generating Parameter Standard
Parameter Value Estimate Error
o 0.7 0.69 0.05
Py 0.6 0.55 0.15
BO 1.0 0.32 1.42
Bl 2.0 2.03 0.26
62 ~-1.0 -0.87 0.14
63 0.0 -0.03 0.06
84 30.0 29.51 2,00
65 12.0 15.20 2.28
w 16.0 13.52 2,60 |

The data correspond to the Huk rebellion example (Mitchell,
1969; Doreian, 1981: Table 1) in which there are 5 actual exoge-
nous variables used to generate the data. Both W; and W; are the
(same) contiguity matrix constructed for the 57 regions of the
Central Luzon studied by Mitchell. The parameter values for
the exogenous variables used are 2, -1, 0, 30, and 12 together
with an intercept of 1. The artificial endogenous variable is con-
structed in the same fashion as the foregoing examples (with
Wi = W,) using the values p1 = 0.7 and p> = 0.6. The resulting data
were subjected to the proposed ML estimation procedure with
the results shown in Table 2.

The same patterns are seen in this example as were seen in the
foregoing examples. The estimate of p; is very good and the
estimate of p, is slightly below the generating value with a dis-
crepancy of 0.05 compared to the value used to generate the data.
The estimate of the intercept again appears biased downward
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and is seen to be insignificantly different from zero. Note that a
small value of By was used in generating the data. The estimates
of the regression coefficients are all close to their corresponding
generating values being well within the bounds of sampling vari-
ability and the one coefficient that is 0 is detected as 0. The
measure of fit described earlier takes a value of 0.97. Again, the
procedure appears to work well even when the structure matrix
for the spatial effects term is the same as the matrix for the
spatial disturbance term.

CONCLUSION

This paper has suggested a linear model with both a spatial
effects term and a spatial disturbances term as a natural generali-
zation of the two linear models that have each of these terms
separately. A maximum likelihood procedure was proposed for
estimating this model and some examples of its use were provided
using artificial data. Although not subjected to a full Monte
Carlo simulation, the examples suggest that the procedure works
as well for data generated by processes that conform to the
specification of the model.

There do remain some problems. The results suggest that
there is some value of p, (around 0.3) where a spatial disturbance
cannot be detected. However, this may not be at all serious in
practical situations where the estimation of 8, w, and the p, are
of central importance. At the other extreme, a simulation was
tried where p; and p; took values close to their maximum values;
(the actual values used were p; = p, = 0.9). The ML estimation
worked well in estimating p: and p2 (where p; = 0.91, p, = 0.89),
but the estimates of 8 and w were very poor. This suggests there
is a ceiling for the practical range'’ for which the ps can be
estimated and the entire estimation procedure implemented. One
practical problem to be solved is to know better the practical
bounds for the spatial parameters. Again, a Monte Carlo study
will provide evidence on this issue.
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With the knowledge that the model and estimation procedure
work well for well-behaved data, several further steps are in
order. One is the establishment of diagnostic procedures. A
reasonable approach can be based on the work of Cliff and Ord
(1973). As a first step, spatial autocorrelation can be tested for
using W, (see Cliff and Ord, 1973: 13-15, 29-33). If spatial auto-
correlation is present, then a spatial effects model can be fitted
and the residual tested for spatial autocorrelation using W,
(see Cliff and Ord, 1973: 87-97). If spatial autocorrelation is
present in the residual, then the full spatial effects-spatial dis-
turbances model can be fitted. Alternatively, inference concern-
ing the p could be based on likelihood ratio tests (compare the
approach of Brandsma and Ketellapper [1979] for two regimes of
spatial autocorrelation in the disturbance term). A second avenue
of inquiry is the determination of when this full approach is
warranted and when a less complex procedure would be an
adequate surrogate.

APPENDIX

DERIVATION OF VARIANCE-COVARIANCE
MATRIX FOR THE ESTIMATORS

The log-likelihood function is given by [7a]-[7c]. From [7c] we have,
writing L for L(y):

oL d 2
o L @A+ 2 A Al
o, 2 ap AT 3 InlA] [A-1]

0 ('ALA€) 0 (€)AJA e+ e'ALA 2 ©)
— \€ €)= — (€ €TE —— (€
apl 2°72 apl 2°72 2772 apl

As

0
€=A1Y“'X6=(I —-pIWl)y~XB, 5_ (G)Z_le
P
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and
a ! ! r
— (e)=—yW
Z)p1 ( 1
Thus
a r ! I ’ ! 1 ! 12 r !
a (e A2A2€) =—y W1A2A2(A1y — XB) —(y A1 —-B'X )A2A2W1y

1

=, =2yW] AL Ay + 2p1y'W'1 ASA,W y + 2y'W'1A'2A2XB
From the expression for |A,| (footnote 3):

F) N
5o (A== Z NI —p )

Substituting these into [A.1] gives:

bL 1 F—y l; yr! ! ! A
5;: = = [Y'WAY ALY — 0 Wi A AW,y — y'W A A, X6
N
- iz:l )\i/(l - 'Dlxi) [A.2]
From [A.2]:
°L | SR 2 2
—5 == = YWjALA W y] = 2N/ —p \) [A3]
w
apl
From [7c]:
oL 1 9 ]
— S —— —— 'A’A + .
90, | 20 20, [ A2h2fl 5o (nids) S
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a Al Ia ! At a
— (eAAe) =¢ — (A)A ec+e'A) — (A,))e
apz( 2) apz( A 2ap2( 2)

~e'W'2(I —p,Wy)e—€'(1—- p2W'2)W26

—[e'Wye — pze'W'zwze +e'Wye — p2e'W'2W26]
=—2[e'W,e— Py WyW, e, as e'W'ze =€e'W,e
From the expression for |A, | (footnote 3):
d N
— (InlA,D=- 2 u/(1 — .
9, (nlAy D)= — 2 w/( = pyu;)

Substituting these into [A.4] gives:

1 ! ’ ’ N
apz 5 [e er — PyE W2W2€] - igl Hi/(l _pzui) [A.5]

Differentiating [A.5] with respect to p, gives:

2 N
0°L 1 ., 2 2
5 = [eWaWel = 2 /(1 —ppu) [A.6]
w i=1
E)p2
From [A.2]:
aL 1 ’ ’ ’
o = = YWiAA 6 - Wiy —XB)]
_ LA X
- ;[ywl SAL(Ay —XB)]
1 vy 7! ! 2y
= ; [y Wl (I — p2W2 —p2W2 + ,02W2W2)€]
oL 1
= — — [yYW (W, +W, —20.W. W
0p10p, w Ly W, (W 2~ 202 W3 Wp)el
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- Lo
N Y W1V2€] [A.7]

where V, = (W2 +W, - 2p2W2W2)

Restating equation [10] :

oL N 1 o
—=——*+—= [€A,A A8
0 2w g [EAA [A8]
)
2
2
9 I; = N2 - 3 [e'AsA,€]
ow 2w 2w
= 1 N — N (at the minimum) from [11]
2002 2w
= — ——N2 [A‘9]
2w
From [A.8]:
2
1 3 ..,
oL _ b — (e'AjA€)
dwap, 202 90,
1 r r !
=-— [eW,e—pye W, W, €] [A.10]
w
From [A.8]:
2°L 1

d
= — — (€A)A0)
dwdp, 9t Ay 22

1 12 ! ! I ! !
= — [—2y W1A2A2y +2p,y W1A2A2W1y
2w
+ 2y W1A2A2XB]

1 ! ' yy! ’ xyr! '
— = YWiAYA)Y — oy WA AWy —y WA A, X
w

1l
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= — = YW AL — o, W))y — y'W|A)A, XB]

=- — [y'W'lA'zAze]
w
_ 1
== = [e A A,W,y] [A.11]
w
Restating [8] :
oL _ 1 N NG
e [-X'AyA, A,y + X'A) A, XB] [A.12]

Differentiating with respect to 8 gives:

32L 1o,
= - = (X'AYALX) [A.13]
oB w
From [A.12}:
L 1 A A X
%—w“ = 2—('02 [XA2A2A1y_XA2 2 ﬁ]

But at the maximum value of L(y), § = (X'AYA,X)™ ! X'A A Ay

N

221

3_5&3 =0 at the minimum [A.14]

From [A.12]:

2L 1 [.,, @
= = |X'AA, — Ay
0Bdp, w op
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1
= — — [X'ALA W A.lS5
— [X'A3A,W,y] [A.15]
From [A.12]:
ﬁ*}—[X'—E)—(A'A)Ay X'-—a——(A'A)XB]
aBapz w ap2 27727 apz 2772

1 1 ’ !
= = = [X(Wy+ W, —p,WyWy)Ayy

— X'(W) + W, — p, W)W, )XB]

1 '
- :; [X'(Wz + W2 - Pzwzwz) (Aly - XB)]

1 [X'V €] [A.16]
w

Having obtained the 82L/Bﬁap2 we turn now to construct the entries of
the matrix —E[azL/aoraes] .From [A9]:

2
| L)X (A7
ow 2w
From [A.11]:
%L

= 1 NS NN -1 —1.-1
2ot = ~E (A, )AAW (A "AB+HA A, )]

ase=A;lvandy=A]_1X{3+A1_]A2_1u. Hence,

2L
8w8p1

_ 1 ) R ~1
——; [VAW AL A, v Y AW AL XB]
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and
d’L _ 1 ' . _ —-1,-1
—E 2ot = -(} E[v'B,»] with B =AW, A A,
1 /
== E[tc(v'B,v)]
w
_ 1 2
= tl‘(Bl)O I
w
Ly (B,) A.18]
= — tr .
w 1 [
From [A.10]:
2
0°L 1, ’
2t = — —w—z [T~ p,W,)W,e]
= = L pwyay )]
T2 2
w
2
%L 1 1
—E = — E[trr' W,A
[8w8p2] w2 [t 22 'l
- L tr(B,)o’1 with B, =W,A; !
2 2 2 272
w
Ly (B,) [A.19]
= — I .
w 2
From [A.14]:
2
0°L
—E =0 .
[awaﬁ] [A.20]
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Write
N
_ 2 2
& = El)‘i (L =py)

then from [A.3]:

o’L e L (A A+ XA W AL AW
a0, 17 5 2 N 1 18282
-1 1,1
(A X+ A A )]
2
o"L| 1 par=1 =1 A ~1,-1
—E | — BAY AT WA A WA A Y
1

-1

! ! ! ! —1
+BX' AT WIALALW, AT IXG] o

1 ! ! !
= — E[V'B]B;v + f'X'CXB] —
w

where C = A'l_IW'lA'2A2W1A1_1
Hence,
L] 1 - ot
~E | — |7 — [Bu('B;B;») + FXCXB] —
ap% w

1 ’ 1

= — [t(B}B))o’1+BXCXB] — e,
w

. [wir(B|B,) +B'X'CXB] — o
w

1 1 ’ !
= t(B}B)) —a; + = FXCXp
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From [A.7]:
2
1 ! !
DL Ly g
90,Py w
1 T T N ST -1
=_Z.)_ (WA, Ay +BXAL )W VLA, ]
So
82L 1 1—1 ,1—1 -1 -
—E| — | = = E['A AT W VA, ]
) g

= L EDy] with D=A, AT WV, A5
w
1 )
= — E[trv Dy]
w
1
= — tr(D)o’I = tr(D) [A22]
w

From [A.15]:

221

aB3p,

1 Pat -1 ~1,-1
= 5 [(X'AYA W (A "XB+ A A, )]

So

[X'A,A,W, A 'Xg] [A23]
From [A.6] with
N
L2 2
az = - izlui /(1 - ’OZMi)

1 [N e -1
— =, — 5 [v'A, W,W,A, v]
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Hence
2
o°L 1 v
—E ——‘2* = — E[tI(V B2B2V)J ——0(2
9 w
)

1 , 2
= — t«(B,B,)o’l —
5 r( 5 2)0 o,
= tr(B}B,) — a, [A.24]

From [A.16]:

®L __ 1 (X'V,A; ']
apop, w22’
Hence
o I I ( [A.25]
— —_— 1 = as a column vector .
aﬁap2
L
From [A.13]:
L] 1,
_E byl X'ALA, X [A.26]

Thus the variance-covariance matrix of the coefficient estimates is given
in [A.26] where:

_ —-1,~1
Bl _A2W1A1 A2

_ -1
B2—W2A2

- r— roAt —1
C = A7 Wi ALAW A

1—1

D =A,

r—1 -1
Al W1V2A2

V, =Wy + W, —2p, W)W,

V(®’b19p2’[§)=
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11
N/2 wtr(B,) wtr(B,) 0}
W wtr(B) (BB, —a)) + WFX'CXB WMD) (WX AYA,W AL XY
wtr(B,) W tr(D) («)2(trB'2B2 - ay) 0
0 wX'AYA,W AT X8 0 wX'AYA,X
NOTES

1. It is convenient to have W1 and W) with row sums of unity (Ord, 1975) in
which case the maximum eigenvalue is 1. It can be shown (Doreian and Hummon,
1976: 128; Ord, 1975: 121) that p < 1/max(A), and so both spatial parameters are
bounded above by 1.

2. Throughout, the convention is used where Y refers to the dependent variable
and y to an observed distribution for that variable.

3. Henceforth L will denote the log-likelihood function and not the likelihood
function.

4. The alternative strategy concentrates on the log-likelihood function and uses
a search procedure. The log-likelihood function [7c] can be reexpressed as:

. N\ .
L(y, p, pl,ﬁ, @) = const —<~2~>1nw+ln]A1| + ln|A2|

and the estimation task is to find the combination of p; and p, that maximizes this
equation or, equivalently, minimizes:

X N N
Inw— 5 lnIAll—- 5 1n1A2|

Let ‘P\i;’ be the eigenvalues of Wl and %/“i% the eigenvalues of W2, then (Ord, 1975):

N

N
lAzl = il;ll a- pz/Ji)

From [12] it is straightforward to show, using [9], that:

NG=y'A AS[T ~ Azx{(A2X)'(A2X)}“1(A2X)'] AyAyy
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Defining M = 1 — Azx{(A2X)’(A2X)}‘1(A2><)', we have
A ! ! !
Nw=y A1A2M2A2A1y

From these equations we seek the combination of p; and p, that minimizes:

2 N 2 N

! !

In(y A1A2M2A2A1y) N i§1 In(1 - Py )\i) “N El In(1 —pz,ui)

This is done by a direct search procedure on pq and p simultaneously. Knowing
that 1 > pj, this expression is computed for a set of values of p; and py. A coarse
search using increments of 0.1 for each of p; and p, can locate the minimum rough-
ly, and then smaller increments can be used through a restricted range around this
rough solution.

S. From the appendix:

o
apl

4

1 !
i <;> [yW1A3AY = p1y W AYA Wy — v W] A4 XB]

N
- .21 N/ =2
i

and
oL 1\ ot S
'5;2‘ o [eW,e—p €W, Woe] — z M/ (1= pyit)

From the estimating equations:
B =X'ALAX) IXALA A,y
2772 272701
é=Ayy-Xp
and Q= (1/N)EAYAe

These equations are substituted into L/dp; = 0 and dL/dp, = 0 to give the non-
linear equations requiring solution.

6. An efficient computer program for doing this (as part of a general spatial
analysis package) is being written at the Social Science Computer Research Institute
at the University of Pittsburgh and will be made available.

7. The examples reported here are each based on a single body of data. A full
Monte Carlo study will clarify the essential properties of these estimators with re-
spect to bias, if any, and sample variability. Such a study is currently being designed.

8. The values are suggested by the analysis of Doreian (1981: Table 2). Note
that one parameter is set to 0.
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9. The full set of categories are Urban, South Louisiana plantation, South
Louisiana bayou, Florida, South West Louisiana, North Louisiana plantation, Macon
Ridge, North Louisiar}a Hills and Central Pine Hills (see Howard, 1971 for details).

10. The ratio of 3 to its corresponding estimated standard error is distributed as
a t-statistic and a 2-tail test considered.

11. Of course, in many situations the precise value of the intercept will not be
of interest. Compare Rao and Miller’s (1971: 5-6) amusing argument on this. If the
intercept is interpreted as the mean impact of excluded exogenous variables, this
becomes a more important issue.

12. That such a ceiling exists is not surprising nor is it conceptually bothersome.
In the estimation procedure for the parameter estimates and the variance-covariance
matrix for these estimates (I — p,wl)--l and (I — ,1)2W2)_1 are involved. Given that
a1 - pW)“1 =1+ pW+ p2W2 + p3W3 + .. . it is clear that this converges far less
rapidly for high p. This is likely to be the technical reason for the poor performance
of the estimation procedure for high ps. When the specification of the model is
considered, a statement that Y = WY + X + € is one saying there are subareas of
great homogeneity where the value of one area is the same as that in adjacent areas.
If this applies throughout the region, then Y is essentially the same throughout the
region. With no variability to account for, there is little point in specifying a model.
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