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Abstract 

The classic formulation of structural balance by Cartwright and Harary (Psychological 
Review, 63, 1956, 277-293) had the basic structural theorem that a balanced structure could 
be partitioned into two mutually antagonistic subgroups each having internal solidarity. 
Davis (Human Relations, 20, 1967, 181-187) extended this theorem for cases where there 
can be more than two such mutually antagonistic subgroups. We use these theorems to 
construct a criterion function for a local optimization partitioning procedure for signed 
digraphs. For any signed digraph, this procedure yields those partitions with the smallest 
number of errors, a measure of the imbalance in the graph, and an identification of those 
links inconsistent with both generalized and structural balance. These methods are applied 
to some artificial data and to the affect data from Sampson (A novitiate in a period of 
change: An experimental and case study of social relationships, Dissertation, Cornell 
University, 1968). The latter provides a positive test of a basic tenet of balance theory, that 
there is a tendency towards balance with signed relations in human groups. While these 
methods can be applied to all signed digraphs and signed graphs, the balance hypothesis is 
relevant only for affect ties. 

1. Introduct ion 

St ruc tura l  ba lance  theory  has  been  an endur ing  concern  for many  social  
psychologis ts  and  sociologists.  O u r  ini t ial  focus he re  is on the  set of  t h e o r e m s  in 
the  fo rmal ized  vers ion  of  s t ruc tura l  ba lance  theory,  par t i cu la r ly  the  bas ic  s t ruc ture  
t h e o r e m  of  Car twr igh t  and  H a r a r y  (1956). W e  use these  t h e o r e m s  as the  founda-  
t ion for  a set of  p r o c e d u r e s  that ,  for a s igned social  ne twork ,  (i) es tabl i sh  those  
pa r t i t ions  having an op t imized  c r i te r ion  funct ion as close as poss ible  to ba lance ,  (ii) 
es tabl ish  a measu re  of  the  ex ten t  to which a s t ruc ture  is imba lanced  and  (iii) 
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Four Imbalanced Triadic Configurations 
Fig. 1. Eight directed POX triads. 

identify those ties (and, by implication, those actors) that contribute to a lack of 
balance in a social structure represented in network terms. 

Heider  (1946, 1958) is credited with providing the initial systematic statement of 
structural balance theory (Taylor, 1970). In his formulation, there are three 
objects: a focal person, P, another actor, O, and a nonperson object, X. The object, 
X, can be "a situation, an event, an idea or a thing" (Heider, 1946 p. 107). For P, 
these entities form a coherent whole with sentiment relations between P and O 
and unit relations between the actors and X. The theoretical unit, POX, is a triad 
that can take any of the basic forms shown in Fig. 1, where solid lines represent 
positive ties and dashed lines represent negative ties. 

A triad is (sign-) balanced if the product of the signs in the triad is positive and 
it is (sign-) imbalanced if the product of the signs is negative 1. The top panel of 
Fig. 1 displays the balanced triads with imbalanced triads in the lower panel. In 
Heider 's  theory, people prefer balanced triads to those that are imbalanced. Given 
this, balanced triads are stable, in the theory, while imbalanced triads generate 
tension and forces towards balance. 

The same ideas of tensions and forces are present as key ideas of Newcomb's 
(1956, 1961) statement of structural balance theory. For his POX triad, X can be a 
nonperson object, another actor in the group or even the entire group 2. Heider 's  
formulation deals only with signed networks (where the value of the ties are 1, 0 or 

Henceforth we refer simply to balance and imbalance. 
2 Newcomb builds in additional structural elements,  such as P's perception of O's  sent iment  towards 

P, in addition to O's  sent iment  towards P. These can be incorporated straightforwardly into the formal 
models s temming from the work of Cartwright and Harary (1956). 



P. Doreian, A. Mrvar / Social Networks 18 (1996) 149-168 151 

-1), a strategy used also by Cartwright and Harary (1956). Newcomb deals with tie 
strengths. A network can be signed-balanced but not balanced if, for example, P 
likes O more than O likes P. The procedures outlined below can handle both 
binary signed graphs and valued signed graphs. 

2. Balanced signed digraphs 

2.1. Signed graphs 

A signed digraph 3 is an ordered pair, (G, cr), where (Batagelj, 1994, p. 56): 
(i) G = (V, R) is a digraph, without loops, having a set of vertices, V, and a set 

of arcs, R E_ V × V; and 
(ii) tr: R ~ {p, n} is a sign function. The arcs with the sign p are positive while 

the arcs with the sign n are negative. Equivalently, and consistent with most 
diagrams of signed graphs; ~r: R ~ {+ 1 , -  1}. 

As a shorthand, we denote such a graph (V, R, or). For the POX triads of 
Heider and of Newcomb, {P, O, X} eV while the relations among them eR. For a 
social network, the a c t o r s  {ui} I~.V and ordered pairs (vi, v ) e R  for v i, vjeV. The 
signs of paths, cycles, semipaths and semicycles are determined by the product of 
the signs of the arcs contained in them. They are either positive or negative and a 
digraph, G, is balanced if every semicycle in G is positive. 

2.2. Structural balance in signed graphs 

The following partitioning approach to structural balance is based on the 
well-known results from Harary et al. (1965, p. 342). 

Theorem 1. A signed digraph, G = (V, R, o'), is balanced if and only if, for every pair 
o f  vertices in V, all semipaths joining them have the same sign. 

Theorem 2. A signed digraph is balanced if and only if every semicycle is positive. 

Theorem 3. A signed digraph, G = (V, R, o') is balanced if and only if V can be 
partitioned in two subsets A and B such that: 

(i) V(vi, vj) mapped to p under or either vi, vie A or vi, v~e B, and 
(ii) V(vi, v )  mapped to n under or, vie A and vie B, or vice versa. 

See also Roberts (1976, p. 70). Theorem 3 has been called the 'structure theorem', 
for obvious reasons. A (macro-) network property is one where there are two 
mutually antagonistic subgroups 4, each of which has internal solidarity (only 
positive ties). 

3 These  definitions can be restricted straightforwardly to graphs with undirected edges. Indeed, the 
presentat ion of Cartwright and Harary (1956) used such graphs. 

4 We ignore the case where one of the two subgroups in the partition is empty. Additionally, we 
assume the digraph is not disconnected. 
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2.3. Partitionable signed graphs 

Davis (1967) noted that social groups /ne tworks  frequently have multiple coali- 
tions with negative ties between coalitions and sought the conditions under which 
such partitions could occur. The all negative triad in Fig. 1 is ambiguous and need 
not be defined as imbalanced. Indeed, when it is defined as balanced, two items 
change. Instead of examining the sign of a semicycle we examine whether or not it 
contains a single negative arc. Second, instead of a partition into two subsets we 
look at partitions into more than two subsets. A signed digraph, G, is k-balanced if 
V can be partit ioned into k subsets, called "plus-sets", such that the positive ties 
are found only within plus-sets and the negative ties go between plus-sets 5. Any 
signed graph that is not k-balanced is k-imbalanced for k _> 2. 

Theorem 4. A signed diagraph is k-balanced if and only if it contains no semicycles 
with exactly one negative arc (Davis, 1967, p. 181). 

We reserve the term 'balance '  for k = 2, its more traditional usage, and use the 
term 'generalized balance'  for k > 2. 

2.4. Measures of  generalized imbalance 

The initial psychological and social psychological theories posited a tendency 
towards balanced structures. Empirically, if a signed network is changing through 
time towards balance (or not), it becomes necessary to measure the extent to which 
this network is imbalanced in order to test the theoretical hypothesis of movement  
towards balanced structures. Two broad classes of measures of balance have been 
proposed (see Harary et al., 1965, pp. 346-352). The first uses the relative counts 
of balanced semicycles to all of the semicycles in the graph. The other uses the 
negation of the arcs that contribute to imbalance. An arc index of imbalance in a 
signed digraph is the number  of arcs that must be changed in sign in order to 
construct a balanced network. More precisely, a collection of arcs "is called 
negation-minimal if its negation results in balance, but the negation of any proper  
subset of (the set) does not" (Harary et al., 1965, p. 349) 6. Henceforth,  we will use 
the negation-minimal set of arcs as a measure of imbalance in a signed diagraph. 
The concept of negational-minimal sets generalizes straightforwardly to the cases 
of k > 2 .  

s Davis (1967) used the term 'clustering' to distinguish the phenomenon of multiple clusters from the 
balance partition into clusters. We subsume both balanced and clusterable under the term k-balanced 
and reserve clustering and clusterable for the broad area of cluster analysis. 

6 An alternative arc index is the number of arcs that must be removed in order to establish a 
balanced structure. A deletion-minimal set of arcs can be specified in a similar fashion. However 
Harary et al. (1965, p. 350) prove that any deletion-minimal set of arcs of a signed digraph is 
negation-minimal and conversely. This applies also for k > 2. 
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3. Partitioning via optimizationai techniques 

Ferligoj et al. (1994) have advocated an approach to block model partitioning 
via local optimization procedures. For structural equivalence (Batagelj et al., 
1992a), for regular equivalence (Batagelj et al., 1992b) and generalized concepts of 
equivalence (Doreian et al., 1994), a criterion function is specified and minimized. 
For a specific equivalence type, the optimizational problem is: determine the 
clustering (partition) C * for which: 

P(C*) =min  P(C) 
C o1~ 

where C is a clustering of the given set of entities, V, q~ is the set of all possible 
clusterings and P: q~ --, • ,  the range of the criterion function. 

The original structure theorem (Theorem 3) and its generalization (Theorem 4) 
specify partitions of V. Each partition has plus-sets and a distribution of ties that 
conform to the type of partition considered. The negation-minimal index of 
imbalance and generalized imbalance suggests a natural criterion function. Depar- 
tures from structural or generalized balance are either negative arcs within 
plus-sets or positive arcs between plus-sets. Each can be viewed as a type of error 
and the natural criterion function is: 

P(C) = E n  + E p  (1) 

where ~p is the number of positive arcs between plus-sets and ~n is the number of 
negative arcs within plus-sets. Implictly, these types of error are equally important. 
However, in some empirical context, one type of error may be more important 
than the other. For example, negative arcs within plus-sets may generate greater 
tension than positive arcs between plus-sets. The criterion function can be rewrit- 
ten as: 

P(C) = e~En + (1 - a ) Y : p  (2) 

where 0 _ a _< 1. If a = 0.5, the types of error are equally important and (2) is 
merely a reweighting of (1). For 0 _< et < 0.5, positive errors are more consequen- 
tial, while for 0.5 < e~ _< 1.0, the negative errors are more important. Herein, the 
types of errors are treated as equally important. 

We propose the following local optimization procedure. Let k be the number of 
plus-sets for which a partitioning is sought. The set, V, is randomly partitioned into 
k clusters and the partition has a set of neighbors. These neighbors are obtained 
from the clustering either by moving one vertex from one cluster to another cluster 
or by interchanging two vertices from different clusters. The criterion function is 
computed for the initial random partition. Neighbors of a given solution are 
examined and the criterion function is computed for the neighbors. If a partition 
with a lower value of the criterion function is found we move to that solution. If 
not, we examine another neighbor of the current partition. Note that the method 
of determining neighbors is a random selection. Further,  if interchanges are 
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implemented, we do not examine all possible interchanges but make a random 
selection from a randomly generated set of possible interchanges. The movement 
of one vertex from a cluster .to another is also examined randomly. When we 
compute the value of the criterion function for a selected neighbor, we do not 
need to compute the criterion function for the whole graph. Such a computation 
would have a time complexity of O(n2). Instead, we compute the difference in the 
criterion function, a computation whose time complexity is only O(n). This proce- 
dure is repeated many times. From each random partition into k clusters, the 
minimal value of the criterion function is computed and the set of final partitions 
are those having the minimized value of the criterion function over all of the 
random starting partitions. 

This procedure is one where the number of clusters is specified and a local 
optimization routine is used to locate the set of partitions having the minimum 
value of the criterion function. These clusters will be as close as possible to the 
corresponding plus-sets of the partition. In addition to having these partitions, we 
have also the arc index of the considered form of balance, either derived from Eq. 
(1) or Eq. (2), and we have the identification of the arcs that are not consistent 
with the underlying form of balance of the partitioned structure. 

As the algorithm is the implementation of a local optimization procedure, there 
is the risk of obtaining only local optima. For small graphs, it is possible to search 
through all partitions. When we have done this we know the global minimum of 
the criterion function. In these cases, the local optimization procedure always 
located the global minimum. We emphasize the need to repeat the procedure 
many times 7. One perhaps surprising feature is that it is possible to have multiple 
partitions, for a given value of k, with the same minimum value of the criterion 
function. We note that Davis (1967, p. 183) anticipated this for k > 2, and it can 
hold also for k = 2. 

We doubt that it is useful to specify a specific partition as a starting point for 
the local optimization procedure. The obvious candidates are partitions from some 
structural equivalence algorithms, for example, CONCOR. Doreian et al. (1995) 
show that structural equivalence partitions of signed graphs (with stacked positive 
and negative ties) lead to partitions with very high criterion functions and parti- 
tions far from k-balanced partitions 8. The local optimization procedure used 
herein is very fast and, we believe, reaches partitions with lower values of the 
criterion function 9 

7 For the Sampson 18 person example (with one relation) considered below, a set of 12 repetitions, 
with between 5500 and 7800 relocations takes about 6 s on a 486 machine running at 66 MHz. The 
number of relocations increases with k but increases the running time by, at most, 1 s. Thus far, we 
have not had to repeat the entire process more than 15 times. Nor is it necessary to increases the 
number of repetitions above 12, as, in most cases, the optimum value of P(C*) has been reached by 
then. 

s Doreian et al. (1994) note similar, but far less extreme phenomena, when attention is confined to 
structural equivalence partitions of a social relation. 

9 In our experience, constructing, preparing a prior partition and using it as input to the partitioning 
algorithm, takes longer than a full implementation of the current procedure. 
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4. Illustrative examples 
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To mobilize the optimization procedure advocated here, two parameters  are 
specified, namely k and a. For structural balance, the only value of k is 2, while 
for the generalized balance of Davis (1967), k is greater  than 2. For our purposes, 
we deal with k > 2. Fig. 2 contains a signed digraph with nine vertices. In general, 
a relatively small number  of values of k are used but, for this example, we examine 
all possible values of k. 

Table 1 shows the value of the criterion function (from Eq. (2)) for each number  
of clusters together with the number  of partitions that have the minimized value of 
the criterion function. At one extreme, having all of the vertices in a single cluster 
means that all of the negative arcs in the graph contribute to the error score. At 
the other extreme, having a partition of the graph into singletons means that all of 
the positive arcs contribute to the criterion function ~0. The highest values are at 
these extremes. In general, we have found that the graph of the values of the 
criterion function against the number  of clusters has a general concave upwards 
shape implied by the values of Table 1. 

According to those values, there is a unique partition into two clusters having 
the minimized value of the criterion function. This partition is: {a, e, f, i}, {b, c, d, 
g, h} and the arcs that are inconsistent with structural balance are the negative a to 
e link and the negative h to g link. Both of these errors are found in imbalanced 
cycles in this graph. Similarly, the unique partition of the vertices into three 
clusters is: {a, e, f}, {b, c, d, g, h}, {i}. This three-cluster solution identifies the same 
two arcs as being inconsistent with generalized balance. 

Partitions of the vertices into four, five or six clusters each yields more than one 
partition with the minimized value of the criterion function. In general, we are 
inclined to accept the partition with the minimized overall value of the criterion 
function and we prefer  either a unique partition corresponding to such a value of 
the criterion function, or having a small number  of partitions each having the 
same value of the criterion function. 

We turn now to examine the two graphs used by Davis (1967) to illustrate the 
generalized balance approach. These are shown in Fig. 3. The graph on the left is 
k-balanced (with zero error) while the other is not. Table 2 shows the values of the 
criterion functions for each graph and all numbers of clusters in partitions. 

The k-balanced graph has two partitions with zero errors. The clustering {a, c}, 
{b}, {d, e, f} is three-balanced. The partition into four clusters where a, b and c are 
singletons, with {d, e, f} as the fourth cluster, is four-balanced. These are exactly 
the partitions identified by Davis. The second panel of Table 2 reveals that the 
second graph of Fig. 3 cannot be parti t ioned so as to have a criterion function of 
zero regardless of the number  of clusters, as pointed out by Davis. 

10There are ten positive arcs in the graph and with a = 0.5, the value of the criterion function 
expressed in Eq. (2) is 5. Similarly, there are six negative arcs in the graph which means that Eq. (2) 
yields an error score of 3. 
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Fig. 2. A 9-node signed digraph (Source: Harary et. al., 1965, p. 347). 

Table 1 
Criterion function values for Fig. 1 

Number of Minimized value of Number of 
clusters criterion function partitions 

1 3.0 1 
2 1.0 1 
3 1.0 1 
4 1.5 3 
5 2.0 6 
6 2.5 4 
7 3.0 1 
8 4.0 1 
9 5.0 1 

.@. .Q. 
B • 

Partitionable Not Partltionable 

Fig. 3. Signed graphs (Source: Davis, 1967, p. 182). 
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Table 2 
Criterion function values for Fig. 2 
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Number of Minimized value of Number of 
clusters criterion function partitions 

The k-balanced graph 
1 7 1 
2 1 1 
3 0 1 
4 0 1 
5 1 2 
6 2 1 

The k-imbalanced graph 
1 4 1 
2 1 3 
3 1 3 
4 2 6 
5 3 4 
6 4 1 

In  discussing measures  of  structural balance,  Harary  et al. (1965, pp. 348-349)  
present  an analysis of  a stage play having four  scenes ordered  in time. Fig. 4 
displays the signed relations among the four  characters  in each of  the play's scenes. 

Scene One Scene Two 

Scene Three Scene Four 

Fig. 4. Four play scenes. 
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Table 3 
Criterion function values for Fig. 3 

Number of 
clusters 

Minimized value of the criterion function 

Scene one Scene two Scene three Scene four 

1 1.0 1.0 1.5 1.5 
2 0.5 0.5 0.5 0 
3 0.5 1.0 1.0 1.0 
4 1.0 1.5 1.5 2.0 

The play was written to show how the relations changed through time and that at 
the conclusion of the play the structure was balanced. Table 3 shows the value of 
the criterion function for each of the scenes depicted in Fig. 4. Given the focus on 
structural balance, the appropriate  number  of clusters is 2 and the second row of 
Table 3 provides the criterion function (using Eq. (2)) as a measure of balance. It is 
clear that over the first three time points, the structure is not balanced but, at the 
conclusion of the play, the structural configuration is balanced. 

Harary  et al. (1965) also suggest that the line index of balance 11 can be used to 
identify those links in a network that will change to result in a balanced structure. 
This hope is unlikely to be fulfilled. Consider the graph at Scene One from Fig. 4. 
There are three distinct partitions of these vertices that have the same lowest value 
of the criterion function. One is {Hero, Buddy, Blackheart} and {Goodman}. The 
link identified as inconsistent with balance is the negative link from Hero  to 
Blackheart. However, if either of the positive links in the three person triad 
become negative, the overall structure is balanced. Note also that the Hero  - -  
Blackheart link remains negative in each scene, including the final balanced 
structure. Furthermore,  the partitions do not uniquely identify the arc requiring 
change. Another  partition with a minimal value for the criterion function is {Hero, 
Goodman} and {Buddy, Blackheart}. For this partition, the link identified as being 
discrepant from balance is the positive link from Hero  to Buddy. The third 
partition having the minimal criterion function is {Hero, Buddy, Goodman} and 
{Blackheart}. This time, the link identified as a contributor to the lack of balance is 
the positive tie from Buddy to Blackheart. Thus, each link in the imbalanced triad 
can be identified as a link contributing to imbalance depending on the particular 
partition selected. The set of partitions of the structural configuration, by them- 
selves, are not helpful in discerning which link will actually change. 

Similar remarks apply to each of the scenes depicted in Fig. 4. If  the structure 
of Scene Three is examined, the partition yielding the minimized score of the 
criterion function is unique: {Hero, Goodman} and {Buddy, Blackheart}. For this 
partition, the link identified as inconsistent with balance is the positive link from 
Hero  to Buddy. As can be seen in the final diagram of Fig. 4, this identified link 
did not change. Thus even for unique partitions, it appears  that while the 

11 Use of Eq. (1) gives their index. Our measure in (2) is simply a linear transform of it. 
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partitioning approach can identify the partition closest to balance and provide the 
appropriate measure of imbalance, it cannot identify the specific lines that will 
change in a structure. 

We turn now to consider a sustained empirical example. 

5. A balance-partitioning analysis of the Sampson monastery data 

The Sampson (1968) study provides a rich resource of sociometric data for a 
variety of social relationships among a group of young men who were either 
postulants or novices at a New England monastery. We consider the affect 
relationship for three of the time periods delineated by Sampson. At time T 1, 
Sampson identified 13 trainee monks of which six remained at time T 2. Among 
these actors, Peter was a leader with Bonaventure and Berthold joining him as the 
core of the remaining trainees. Mark is identified as an isolate, with Victor and 
Ambrose described as peripheral members of the group remaining after T~. A t  T2, 
12 members of the new class were admitted to the monastery: John Bosco, 
Gregory, Basil, Romuald, I~uis, Winfred, Amand, Hugh, Boniface, Albert, Elias 
and Simplicius. Among the new group, John Bosco and Gregory emerged early as 
leaders and Basil was seen as having a personality problem. Sampson indicates that 
this actor was tolerated but not accepted by the rest of the group. Additionally, 
Elias and Simplicius were identified as immature, childish and in need of help. The 
next time point identified by Sampson, T3, was described as a period of differentia- 
tion and polarization and T 4 was identified as a subsequent time point, one that 
occurred just before the expulsion of several members of the new class. 

Describing the subgroup structure of these actors, Sampson identified three 
distinct groups. The Young Turks were made up of John Bosco, Gregory, Mark, 
Winfred, Hugh, Boniface and Albert. The Loyal  Opposition was comprised of 
Peter, Bonaventure, Berthold, Victor, Ambrose, Romuald, Louis and Amand. The 
remaining actors, Basil, Elias and Simplicius, were labelled as the Outcasts. This 
partition is exactly the one reported by Breiger et al. (1975) from an analysis of the 
T 4 data (for multiple relations). 

If the interval from T 2 to T 4 was a period of differentiation and polarization, it 
is reasonable to expect that, with the passage of time, the (k-) imbalance measure 
for this group of actors would decrease and that the actors could be partitioned 
into differentiated subgroups that were mutually antagonistic. Specifically, the 
partitioning algorithms that we have described herein should yield the coherent 
subgroups identified by others and the measure of imbalance should decline from 
T 2 through to T 4. 

We present two sets of analyses. Sampson reported his sociometric data in the 
form of valued graphs. Each actor was asked to provide a list of the three other 
actors for whom they had the greatest positive affect as well as the three actors 
they disliked the most. The positive affect ties have values 3, 2 and 1 in decreasing 
order of positive affect, while - 1, - 2 and - 3 indicate an increased ordering of 
dislike. The three valued graphs are reported in matrix form in Table 4. 
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Table 4 (continued) 

161 

1JohnBosco  0 - 2  3 0 0 0 - 3  0 0 - 1  0 1 0 2 0 0 0 0 
2Gregory 3 0 0 - 3  0 0 1 - 2  0 0 0 2 - 1  0 0 0 0 0 
3Basil 3 - 2  0 - 3  0 - 2  0 0 0 0 0 0 2 0 0 - 1  1 2 
4Pe te r  - 2  - 3  0 0 3 1 0 0 0 0 2 0 0 - 1  0 0 0 0 
5 Bonaventure 0 0 0 3 0 0 0 0 1 0 2 0 0 0 0 0 0 0 
6Berthold  0 - 1  - 3  3 1 0 - 2  0 2 0 0 0 0 0 0 0 - 2  0 
7Mark  0 3 0 - 3  0 - 2  0 - 1  0 0 0 1 0 0 0 2 0 0 
8Victor  0 - 3  - 2  3 0 2 0 0 1 0 0 0 0 - 1  0 0 0 0 
9Ambrose  0 0 - 3  0 1 0 0 3 0 0 0 2 0 0 0 0 - 2  - 1  

10 Romuald 0 0 0 3 1 0 0 0 1 0 0 0 2 0 0 0 0 0 
l l L o u i s  - 1  - 3  - 2  0 2 0 0 3 0 0 0 0 0 1 0 0 0 0 
12 Winfrid 3 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
13Amand 0 - 3  0 0 2 - 2  1 0 0 0 0 - 1  0 0 0 0 0 3 
14 Hugh 3 0 0 - 3  0 0 0 - 2  0 0 0 1 0 0 2 0 - 1  0 
15 Boniface 0 3 - 2  - 1  0 0 1 0 0 0 0 2 - 3  0 0 0 0 0 
16Albert  0 3 - 1  - 3  0 0 2 0 0 0 0 0 0 0 1 0 - 2  0 
17 Elias 0 1 2 - 1  0 - 3  0 - 2  0 0 0 0 0 0 0 0 0 3 
18Simplicius 0 1 2 - 1  0 0 0 - 3  0 - 2  0 0 0 0 0 0 3 0 

be 'negative '  errors whenever there are negative arcs within plus-sets. If  n~m is the 
numerical value of a negative arc from 1 to m within C~, then the contribution of 
Ck to the negative error is ~l,mn~m . Contributions to the 'positive'  error come from 
positive arcs between plus-sets. Let C r and C s be distinct clusters. Additionally, let 
i be a vertex in C, and j a vertex in Cs. We u s e  prs  to denote the numerical value ij 
of a positive arc from i to j. The contribution of C r and C s to the positive error is 
~i,jpirj s. Weighting the positive and negative equally, we have: 

k "l,m " r,s" i,j " 

and if positive and negative errors are not weighted equally, we use: 

P ( C )  = o r [ E (  En lk rn ) ]  "4-( 1 -  ° t )  [ E  ( . ~ . p i ' ; )  ] 
c k "l,m "J  [ r , s ' t , j  " j  

(3) 

(4) 

with a as defined previously. 
I f  strict structural balance is the focus of attention, then we need to consider 

partitions into two clusters, consistent with Theorem 3. However, if we consider 
the kind of partitioning suggested by Davis (1967), then we can look at partitions 
with any number  of clusters, consistent with Theorem 4. Table 5 shows the values 
of the optimized criterion function for partitions with up to five clusters. 

The second row of Table 5 presents the measures of imbalance of 21.5, 16.0 and 
12.5 for the successive time points. It is clear that the amount of imbalance in 
the structure declined steadily through time. However, it is interesting to note 
that the optimized criterion function is larger for partitions with two clusters than 
it is for partitions with three clusters. This suggests that the generalized form of 
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Table 5 
Measures of imbalance through time 

Number of Time Points 
clusters T2 T3 T4 

1 48.5 48.0 47.0 
2 21.5 16.0 12.5 
3 17.5 11.0 10.5 
4 19.0 13.5 12.5 
5 20.5 16.0 15.0 

partitioning is more appropriate  for this network. The measure of (generalized) 
imbalance also declines through time. 

At T z there is only one partition with the minimized criterion function value of 
17.5. One cluster is made up of John Bosco, Gregory, Mark, Winfred, Hugh, 
Boniface and Albert. This collection of actors is exactly the Young Turks identified 
by Sampson. The second cluster is made up of Peter, Bonaventure, Berthold, 
Victor, Ambrose,  Romuald and Louis. With one exception, this is the Loyal 
Opposition identified by Sampson. Finally, the third cluster is made up of Basil, 
Elias, Simplicius and Amand.  This group contains all of the Outcasts. The only 
difference between this partition and the one reported by Sampson is the location 
of Amand among the Outcasts rather than belonging to the Loyal Opposition. At 
Time T 3 there is again only one partition with the optimized criterion function 
value (of 11). This partition is exactly the partition obtained at T 2. For the final 
time period, there are two partitions having the minimum criterion function value 
of 10.5 and one of these is exactly the partition reported for the previous two time 
points 12. It seems, then, that the partitioning of the actors is stable and that there 
has been a polarization process leading to increased 3-balance through time. 

Table 6 shows the permuted affect matrices for the three points, where cluster 
members  are adjacent 13. It is immediately clear that there are very few negative 
links within the identified subgroups. The Young Turks have one at T 2 and two at 
T 4. The Loyal Opposition has one at T 2 and at T 3. Overwhelmingly, positive ties 
between subgroups contribute most to the error count. This suggests that negative 
ties within (polarized) subgroups are not tolerated while there is latitude for the 
formation of positive ties between such subgroups. Intuitively, this makes sense 
and is an hypothesis worth testing in other data. 

Table 7 shows the ties inconsistent with generalized balance (k = 3) for each of 
the time points. Consistent with the decline of the imbalance measure shown in 
Table 5, the number  of these ties also declines through time. At T2, there were 20 
arcs identified as contributing to the index of imbalance. Two of these were 
negative links within identified clusters as noted above, and 18 were positive links 
going between clusters. For T3, there were only 14 ties identified as contributing to 

12 The other partition with a minimum value of the criterion function is considered subsequently. 
13 The null ties (0) are marked with • (as attention is focused on the non-null ties). 
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the generalized imbalance• Finally, at T 4 the number of links contributing to the 
generalized imbalance has dropped to 11. These are macro-level items. As was the 
case with the tiny four actor system of Fig. 4, identifying the discrepant (with 

Table 6 
Plus-set parti t ions (for k = 3) of the actors at each time point 

Actor id Actors 

1 2 7 12 14 15 16 3 13 17 18 

John Bosco 1 
Gregory 2 3 

Mark 7 
Winfrid 12 3 

Hugh 14 3 

Boniface 15 3 
Albert  16 1 

Basil 3 2 
Amand 13 

Elias 17 
Simplicius 18 2 

Peter  4 
Bonaventure 5 

Berthold 6 1 
Victor 8 3 
Ambrose 9 

Romuald 10 
Louis 11 

/'3 
John Bosco 1 2 

Gregory 2 3 
Mark 7 1 2 
Winfrid 12 3 1 
Hugh 14 3 1 
Boniface 15 2 3 

Albert  16 2 

Basil 3 3 - 1 

Amand 13 • - 3 
Elias 17 1 

Simplicius 18 1 

Peter  4 - 2  - 3  

Bonaventure 5 2 
Berthold 6 1 
Victor 8 - 2  - 3  
Ambrose 9 

Romuald 10 
Louis 11 - 1  - 3  

• - 1  1 • 

2 1 • 
2 • • 3 

2 1 • 
2 • 2 

2 1 
2 3 

3 
- 3  1 - 1  

3 1 • - - 1  

• - 3  • • 

• - 3  - 2  

2 - - 2  

2 
2 

1 2 1 

2 • 
1 • 2 

1 - 

3 1 

1 - 1  

2 
• - 3  - 2  

- 1  
• - 3  - 1  

- 2  - 3  - 1  - 1  
- 1  - 3  - 2  

3 2 

- 2  

- 2  
1 

- 3  - 1  

1 - 3  - 2  - 

- 1  - 3  - 2  

- 1  

3 
- 3  - 1  

• - - 1  

- 2  - 3  - 1  

- 1  - 2  

1 

2 

2 3 

- 3  
- 1  
- 3  

2 
- 2  

- 2  - 1  

4 5 6 8 9 10 11 

3 - 2  

- 3  - 1  - 2  1 

- 3  
• - 2  

- 3  

- 1  

- 1  • - 3  - 2  

3 2 - 2  
1 - 3  - 2  

- 3  • - 2  

1 3 

3 

3 - 1  2 

2 3 
3 1 

3 1 

- 2  1 3 
- 3  - 2  

- 3  - 2  - 1  
• - 2  

- , 3  

1 

- 3  

• - 2  - 3  

2 - 2  
- 2  • - 1  

- 3  - 2  

3 2 

3 
3 - 1  
3 1 

1 3 

3 1 
2 3 

2 
2 

- 3  - 1  

- 2  
- 1  

• - 3  

• - - 1  

1 

1 
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Table 6 (continued) 

Actor id Actors 

1 2 7 12 14 15 16 3 13 17 18 4 5 6 8 9 10 11 

7"4 
John Bosco 1 
Gregory 2 
Mark 7 
Winfrid 12 
Hugh 14 
Boniface 15 
Albert 16 

Basil 3 
Amand 13 
Elias 17 
Simplicius 18 

Peter 4 
Bonaventure 5 
Berthold 6 
Victor 8 
Ambrose 9 
Romuald 10 
Louis 11 

- 2  - 3  1 2 • 
3 1 2 

3 1 
3 2 1 
3 - 1 

3 1 2 
3 2 1 

3 - 2  
- 3  1 -1  

1 

1 

- 2  - 3  • -1  

-1  - 2  
- 3  • -1  

2 

- 1  - 3  1 

-1  

3 
-1  

- 2  - 3  
-1  

2 

2 
2 

- 3  
- 2  
- 3  

2 
- 2  

- 1  

- 2  

1 2 

3 
3 

3 

- 2  

- 2  -1  

• ° - - 1  

- 3  • - 2  • 
- 3  - 2  -1  • 

- 3  • - 2  
- 1  
- 3  

- 3  • - 2  
2 - 2  

- 1  - - 3  - 2  

- 1  - . - 3  - 2  

• 3 1 

3 • 
3 1 
3 • 2 

1 3 

3 1 
• 2 3 

k-balance)  ties does not  allow us to predict  with certainty which ties will actually 
change through time. 

6 .  S u m m a r y  

The use of the opt imizat ion procedure  for the affect data from Sampson (1968) 
has yielded useful  information.  First, it has identif ied a meaningfu l  part i t ion,  into 
three  groups of actors, that  has the lowest values of the cr i ter ion funct ion  for 
general ized ba lance  at each t ime point .  Second, it has provided a measure  of 
imbalance  for each of the t ime points,  and  third, it has identif ied those links that  
cont r ibute  to the imbalance  found in the par t i t ioned  structures.  These outputs  
provide a straightforward way of test ing one of the key theoret ical  tenets  of 

s tructural  ba lance  and  have suggested an addi t ional  hypothesis concern ing  the 
dis t r ibut ion of the ties that  are inconsis tent  with balance.  

In  addit ion,  the clusters that  are identif ied with this method  are extremely close 
to those de l inea ted  by Sampson and  found  also with blockmodel l ing procedures .  
The  only difference is the locat ion of A m a n d  among the Outcasts  in this analysis. 
There  is evidence in Sampson ' s  narrat ive that  this is the appropr ia te  location for 
A m a n d .  Sampson (1968, p. 354) describes a secret ballot  with four candidates .  
Surprisingly, Basil, given his locat ion among  the Outcasts ,  is one  of the candidates .  
Of  interest ,  here, is the fact that  A m a n d  nomina t ed  Basil. F rom subsequent  
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Table 7 
Ties identified as inconsistent with 3-balance 

Value Ties identified 

r2 
( -  1) John  Bosco ~ Mark 
( +  2) John  Bosco ~ Basil 
( +  3) John  Bosco ~ Bonaventure  
( +  1) Mark ~ Victor 
( + 1) Hugh  ~ Louis 
( +  2) Basil ~ John  Bosco 
( + 3) Basil ~ Gregory  
( +  1) A m a n d  ~ Mark 
( + 2) A m a n d  --* Bonaventure  
( + 2) Simplicius ~ John  Bosco 
( + 3) Simplicius ~ Gregory  
( + 1) Simplicius --* Mark 
( + 1) Bonaventure  ~ A m a n d  
( +  1) Berthold ~ John  Bosco 
( - 1) Berthold ~ Victor 
( + 3) Victor ~ John  Bosco 
( + 2) Victor ~ Gregory 
( +  1) Ambrose  ~ Alber t  
( + 2) Romuald  ~ Hugh  
( + 2) Louis ~ H u g h  

r3 
( + 1) John  Bosco --, Bonaventure  
( + 3) John  Bosco ~ Victor 
( +  1) Boniface ~ Bonaventure  
( + 3) Basil ~ John  Bosco 
( + 1) A m a n d  ~ Mark  
( +  2) A m a n d  ~ Bonaventure  
( +  1) Elias ~ Gregory  
( + 1) Simplicius ~ Gregory 
( +  2) Bonaventure  ~ John  Bosco 
( +  1) Berthold ~ John  Bosco 
( - 1) Berthold ~ Victor 
( + 2) Ambrose  --* Winfrid 
( + 2) Romua ld  --* A m a n d  
( +  1) Louis ~ Albert  

r4 
( - 2) John  Bosco ~ Gregory  
( - 3) John  Bosco --* Mark 
( + 3) John  Bosco -o Basil 
( +  3) Basil ~ John  Bosco 
( +  1) A m a n d  ~ Mark 
( +  2) A m a n d  ~ Bonaventure  
( +  1) Elias ~ Gregory  
( + 1) Simplicius ~ Gregory  
( + 2) Ambrose  ~ Winfrid 
( +  1) Romuald  ~ A m a n d  
( + 1) Louis ~ Hugh  
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interviews, Sampson was able to reconstruct the vote and the only actor voting for 
Basil was Amand.  At all three time points, there are no negative links within the 
Outcast cluster identified here. Further, the number  of positive ties among them 
grows at each time point. We note that White et al. (1976, p. 750) report  the same 
partition of the 18 actors obtained from blockmodelling all of the relational ties for 
7"4. 

The analyses presented in Tables 4 -7  use the valued data. As balance theory 
was formulated for binary signed graphs, it is useful to repeat  the analysis with 
binary ties only. Recoding each 2 and 3 in Table 4 to 1 gives the binary matrices. 
When these are analyzed - -  using Eq. (2) - -  the partitions are identical. The 
pat tern of the + 1 and - 1  elements is the same as the positive and negative 
elements in Table 6. All that changes is the numerical value of the criterion 
function 14 for T2, T 3 and T 4 for three clusters are 10, 7 and 5.5, respectively. In 
general, the analyses of valued and binary matrices will not be identical. In this 
case, however, the results are robust. 

At T 4 there was a second partition - -  displayed in Table 8 - -  with the 
minimum value of the criterion function. The Loyal Opposition remains intact but 
two members  of the Young Turks are reclassified with the Outcasts. 
Given the consistency of the other partition through the three time periods, it 
seems reasonable to pursue the partition in Table 6. However, both do fit equally 
well with a criterion function value of 10.5. The partition in Table 8 has 13 ties 
identified as inconsistent with generalized balance, instead of the 11 identified in 
Table 6 and 7. The analysis of the binary data yields only the partition in Table 6, 
7"4. 

7. Discussion 

The classic paper  of Cartwright and Harary (1956) contained the result that if 
the g raph /ne twork  is 2-balanced, the macro-structure of the graph had two 
mutually antagonistic subgroups having internal solidarity. Davis (1967) extended 
the formulation to one where there can be more than two such mutually antagonis- 
tic subgroups. As the macro-structure is described in terms of a partition, it is 
fruitful to use a partitioning approach to structural and generalized balance. The 
basic structure theorems were used to specify a criterion function that was then 
optimized via a local optimization procedure. This procedure yields the partition(s) 
closest to a k-balanced state, one with a coherent measure of imbalance of the 
overall network and an identification of the minimal set of ties that are inconsis- 
tent with a balanced state. All of which is useful information concerning the 
macro-structure. These methods were used on the Sampson (1968) monastery data 
with convincing results. Along the way, the local optimization procedure provided 

14 Instead of adding the 2s and 3s, only ls are added for the binary matrices. 
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Table 8 
An alternative 
function 

narrative for the affect ties at T 4 (a) Alternative partition with optimized criterion 

Actor id Actors 

1 3 13 14 17 7 12 15 16 4 5 6 8 9 10 11 

- 1  • JohnBosco  1 
Basil 3 
A m a n d  13 
Hugh 14 
Elias 17 
Simplicius 18 
Gregory 2 
Mark 7 
Winfrid 12 
Boniface 15 
Albert 16 
Peter  4 
Bonaventure 5 
Berthold 6 
Victor 8 
Ambrose  9 
Romuald  10 
Louis 11 

- 2  

3 
2 

2 
2 

- 1  

- 2  - 3  

- 1  

- 3  
- 2  
- 3  

2 
1 

- 1  

3 

- 1  

18 2 

- 2  
2 - 2  
3 - 3  

3 1 
1 

3 
2 
3 

- 2  3 
- 3  

- 2  - 1  
- 3  

- 2  - 

1 

- 3  1 • 
- 1  

1 - 1  - 

1 2 

1 2 

1 2 
1 

1 2 

2 

- 2  

- 3  • - 2  
• 2 - 2  

- 3  - 2  
- 1  - 3  - 2  
- 1  - 3  
- 3  - 2  
- 3  - 2  - 1  

- 1  
- 3  

• 3 1 

3 • 
3 1 
3 • 2 

- 1  - 2  - 3  

(b) Ties Identified as Inconsistent with 3-balance 

Value Tie 

2 
1 

3 . 
1 

3 - 

- 2  

( + 1) John Bosco --o Winfrid 
( +  1) Amand  ~ Mark 
(+  2) Amand  ~ Bonaventure 
( - 1) Hugh ~ Elias 
( + 1) Hugh ~ Winfrid 
( +  2) Hugh ~ Boniface 
( + 1) Elias ~ Gregory 
( +  1) Simplicius ~ Gregory 
(+  3) Gregory ~ John Bosco 
( + 3) Winfrid ~ John Bosco 
( + 2) Ambrose  ~ Winfrid 
( + 2) Romuald  --* Amand  
( +  1) Louis ~ Hugh 

a c o n f i r m i n g  ~5 t e s t  o f  a b a s i c  t e n e t  o f  k - b a l a n c e  t h e o r y :  s i g n e d  s o c i a l  s t r u c t u r e  

t e n d s  t o w a r d s  k - b a l a n c e .  F o r  t h e s e  d a t a ,  t h e  g e n e r a l i z e d  s t r u c t u r e  t h e o r e m  ( w i t h  

k = 3 )  w a s  m o r e  u s e f u l  t h a n  t h e  o r i g i n a l  t h e o r e m  f o r  s t r u c t u r a l  b a l a n c e .  

15 The  Sampson data used here were collected via a survey tapping recalled data for sociometric 
items• This may have a built-in bias towards balance, weakening such a test. However, the data analytic 
methods  are not threa tened by this. 
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The ident if icat ion of ties inconsis tent  with general ized ba lance  at a t ime point  is 
not  powerful  enough to be a predictive tool for locating which ties will change 
subsequently.  This is not  unreasonable .  If the balance mechanism does work in 
triadic configurat ions,  then,  as each actor is involved in many  triads, changes 
towards ba lance  in one  triad may move other  triads into imbalance.  If there is a 
force field, in the sense of Lewin (1951), then  it is inappropr ia te  to expect that  
these micro-processes can be modeled  with the macro-level  tools employed here. 
We do emphasize  that  the study of these micro-processes,  and  the way they 
' cumula te '  to genera te  macro-s t ructura l  propert ies  remain  critical areas of study. 
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