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Abstract
This paper presents three items. The first is a brief outline of structural balance oriented towards tracking the amount 
of balance (or imbalance) over time in signed networks. Often, the distribution of specific substructures within broader 
networks has great interest value. The second item is a brief outline of a procedure in Pajek for identifying fragments 
in networks. Identifying fragments (or patterns or motifs) in networks has general utility for social network analysis. 
The third item is the application of the notion of fragments to counting signed triples and signed 3-cycles in signed 
networks. Commands in Pajek are provided together with the use of Pajek project files for identifying fragments in 
general and signed fragments in particular. Our hope is that this will make an already available technique more widely 
recognized and used. Determining fragments need not be confined to signed networks although this was the primary 
application considered here.
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1. Introduction

As noted by Taylor (1970), Heider (1946) provided 
the initial statement of structural balance theory. There 
have been alternative formulations of ‘consistency 
theories’ of signed social relations, including Newcomb 
(1961), Nordlie (1958), Festinger (1957), Osgood and 
Tannenbaum (1955) and others (see Abelson et al., 1968). 
However, we use Heider’s approach because Cartwright 
and Harary (1956) provided a formal generalization 
of his theory, one laying the foundations for analyzing 
signed social networks in balance theoretic terms. Given 
temporal data for signed relations, a natural question is 
how signed network structures change over time regarding 
balance and how this can be tracked. We demonstrate 
doing this by using Pajek (Batagelj and Mrvar, 1998). 
Section 2 provides a brief introduction to the relevant 
parts of structural balance for our purposes here. The 
ideas of defining and detecting network fragments are 
presented in Section 3. The application of fragments 
by creating specific signed fragments appropriate for 
measuring balance in signed networks follows in Section 
4 where two empirical examples are considered. One is a 
directed network while the second is undirected. Section 
5 extends these ideas so that balance can be tracked in 
signed networks over time. A summary and suggestions 
for future work are in Section 6.

2. Structural balance

We consider the initial formulation of balance theory before 
outlining briefly the blockmodeling and triple counting 
approaches for measuring imbalance in a signed network.

Figure 1: The Eight signed triples in Heider’s formulation of 
structural balance theory.

	 All of the triples in the top row are balanced. We 
have labeled them B1, B2, B3 and B4 and use these labels 
in Table 1. They have been expressed in folk aphorisms: 
The top left triple is captured by “a friend of a friend is 
a friend” with all ties being positive; the second triple 
can be viewed as “an enemy of a friend is an enemy” 
with p seeing o as a friend with both o and p seeing q as 
an enemy; the third triple can be viewed as “a friend of 
an enemy is an enemy” with p seeing o as a friend of q 
when p sees both o and q as enemies; the top right triple 
is “an enemy of an enemy is a friend” with p viewing 
o an enemy, seeing o views q as an enemy and p sees 
q as a friend. All of the triples in the bottom row have 
a negative sign and are imbalanced. These are labeled 
U1, U2, U3 and U4 with the labels used also in Table 
1. According to Heider (1946), the bottom left triple in 
the bottom row would be problematic with p seeing q as 
an enemy while seeing o as a friend but recognizes that 
o views q as a friend. The other triples can be viewed in 
a similar fashion. Heider emphasized that balance in a 
triple induced comfort while imbalance created stress for 
the actors in such triples. 
	 In a complete network, if all triples are positive, 
the network is balanced. Empirically, most empirical 
signed networks are not exactly balanced. This is the case 
for the empirical networks considered here. The natural 
methodological issue arising is how to measure the extent 
to which a signed network is balanced or not balanced. 
One proposed measure of balance is the proportion of 
the balanced triples it contains. Its value for a balanced 
network is 1, the maximum possible value. When some 

2.1 The initial formulation

Heider’s (1946) approach rests on considering the eight 
types of triples shown in Figure 1. Positive ties are 
marked with solid lines while negative ties are marked 
with dashed lines. One typical signed relation has, as 
positive ties, ‘likes’ while negative ties are ‘dislikes’ for 
personal relations.  The vertices are labeled by p, q and o. 
The ties are directed as shown by the arrows of the lines. 
In the top left triple, the ties p → o, p → q and o → q 
are all positive. This was seen as ‘balanced’ in the sense 
of there being no discomfort for the three actors. In the 
second triple, p → o is positive with both p → q and o 
→ q being negative. Both p and o agree by each having a 
negative tie to q with a positive tie, p → o. The remaining 
triples in the top row can be read in the same fashion. 
When the signs on the three arcs in a triple are multiplied 
the resulting sign is taken as a measure of the balance of 
a triple. Triples with a sign of 1 are balanced while triples 
whose sign is -1 are imbalanced. These triples are shown 
as Pajek networks in Table 1.



Connections

8 | Volume 35 | Issue 2 | November

Identifying Fragments in Networks

imbalanced triples are present this measure departs 
from 1. If all triples in a network are imbalanced, the 
measure takes its lowest value, 0. The question arises: 
how do we measure the imbalance of signed networks in 
general? There are two broad approaches: using signed 
blockmodeling and counting triples.

2.2 Using the line index of balance from a blockmodel

Cartwright and Harary (1956) proved that if a signed 
network is balanced then the vertices can be partitioned 
into two subsets such that all of the positive ties are within 
subsets and all of the negative ties being between subsets. 
Davis (1967) extended this to any number of clusters with 
the same property of positive ties being located within 
clusters and negative ties between them. The crucial step 
for this extension was to define the all-negative triple as 
balanced. Doreian and Mrvar (1996) observed that the 
‘structure theorems’ of Cartwright and Harary and of 
Davis implied a blockmodel structure. A positive block 
is one having no negative ties. In contrast, a negative 
block has no positive ties. The implied blockmodel of 
an exactly balanced signed network has positive blocks 
on the main diagonal and negative blocks elsewhere. As 
noted above, empirical networks are seldom balanced 
exactly. When a signed blockmodel is fitted to signed data 
it provides also a measure of imbalance in the form of 
the number of ties inconsistent with the relevant structure 
theorem. In essence, this is the line index of imbalance 
proposed by Harary, Cartwright and Norman (1965). 
While the intuitive foundations for blockmodeling are 
straightforward (Doreian, Batagelj and Ferligoj, 2005), 
fitting them can be time consuming, especially as the 
network size increases. Doreian and Mrvar (1996) 
provided a rapid method for fitting signed blockmodels 
in Pajek. This line index is one measure of imbalance.

2.3 Using counts of triples to measure imbalance

Another approach is very simple: count the number of 
signed triples in a signed network. When the triples shown 
in Figure 1 are counted there are two possible measures 
of imbalance. The traditional one is the proportion of 
imbalanced triples with the other being the number of them 
(Doreian and Mrvar, 2015). Counting triples is obviously 
useful when the signed network is complete. However, 
when signed networks are not complete, this necessitates 
counting all closed walks and semi-walks (which include 
triples). Doing this is a non-trivial computational problem. 
When done, the proportion of imbalanced semi-walks, 
most likely, would depart from the corresponding measure 
using only triples. The obvious question is whether 

this matters. We think it does not. The core substantive 
ideas of Heider are formulated in terms of triples. This 
suggests counting triples is more appropriate for socio-
psychological processes than counting the longer semi-
walks. How can this be done simply? An effective way of 
counting triples can be achieved by using the concept of 
fragments. The general approach is to define fragments 
of specific forms, identify them and count them. Doing 
this is achieved straightforwardly in Pajek (see Batagelj 
and Mrvar (1998)). Our focus here is on signed triples as 
fragments, an idea described in Section 3. 
	 We note that, hitherto, the line index and 
proportion of imbalanced cycles as measures of 
imbalance have been closely related: they ought to 
tell the same story. As the size of the networks we can 
study has increased dramatically in recent decades, the 
blockmodeling approach is likely to be less useful due to 
the computational complexities involved. For these larger 
networks, counting triples will be a practical alternative.

3. Fragments

Characterizing networks when they are large has posed 
problems. One strategy is to consider carefully constituent 
parts of networks. As a result, researchers have been 
interested in identifying such smaller parts of larger 
networks having special properties (characteristic shapes) 
across multiple fields. Such smaller parts are called 
fragments, patterns, or motifs. Fragment searching was 
first implemented in Pajek in 1997.  (See also Milo, Shen-
Orr, Itzkovitz S., Kashtan N, Chklovskii D., and Alon, 
U (2002) for a discussion of motifs from the perspective 
of physicists approaching network analysis.) Fragment 
(pattern) searching is a general approach for investigating 
the structure of large complex systems. Frequencies and 
locations of such interesting fragments often provide 
short descriptions of network structures in terms of the 
distributions of well-defined fragments contained in 
them. This could include cycles, k-stars and cliques of 
any size. Given an interest in structural balance, defining 
the eight triples in Figure 1 as fragments is a natural step. 
Doing this sets up the use of fragment searching for all 
signed triples. 
	 We provide a simple example of fragment 
searching in Section 3.1 following some remarks on this 
topic.  See also de Nooy, Mrvar and Batagelj (2011). A 
general backtracking algorithm is applied for fragment 
searching. Several applications have shown that if the 
selected fragments do not occur too frequently in a large 
sparse network, the algorithm is extremely fast. It can be 
applied to very large sparse networks. 
Fragment searching in networks was first applied to 
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large molecules in chemistry (e.g. DNA), for searching 
for carbon rings and other structures. Later, fragment 
searching was successfully applied to searching for 
relinking families through marriages in genealogies. 
Every semi-cycle found in a p-graph representation of a 
genealogy represents some relinking (via blood or non-
blood ties) through marriages. See White, Batagelj and 
Mrvar (1999), Batagelj and Mrvar (2008). 

 3.1 A simple motivating example

Consider the small unsigned network in Figure 2. 
Suppose the task is to identify all 3-cycles and 4-cycles 
as fragments. Some clear 3-cycles - {a, b, c} and {o, p, q} 
- are marked with green edges. Some clear 4-cycles – {e, 
f, g, h}, {k, l, m, n} and {q, r, s, t} – are marked with blue 
edges. The subgraph involving the vertices i, j, k and t is 
a little more complicated. There is a 4-cycle involving all 
four of them. The relevant edges are marked in maroon. 
Note there are also two 3-cycles in this subgraph – {i, 
j, k} and {j, k, t}. The (j, k) edge is unambiguously part 
of the two 3-cycles and is marked in green. The edges 
marked in maroon are each in a 4-cycle and a 3-cycle. 
By a visual inspection, there are four 3-cycles and four 
4-cycles. However, such visual examinations have no 
practical value when searching larger networks having 
hundreds or thousands of vertices. A systematic and 
practical procedure is required. 

Figure 3. The main window for using Pajek
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Figure 2: An undirected graph with 3-cycles and 4-cycles to be 
identified and counted.
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Pajek provides such a practical method. Figure 3 shows 
the main window for Pajek when it is run. Across the 
top of this window is main menu containing items: File, 
Network, Networks, Operations, Partition, Partitions, 
Vector, Vectors, Permutation, Permutations, Cluster, 
Hierarchy, Options, Draw, Macro, Info and Tools. 
Checking on any of these opens a dialogue box. Each 
dialogue box has its own set of relevant objects and 
operations. The primary one we use in the following is 
Networks (which as the name implies leads to working 
with multiple networks) because fragments are defined 
as networks. We search for such fragments in a larger 
network. This requires two networks. In the simple 
example of Figure 2, the network within which the search 
is done is the one in the figure and a 3-cycle would be 
a fragment for which a search is done. When there are 
searches for multiple fragments, each fragment has its 
own search. (We note that the Draw option was used to 
draw all of the network diagrams we show.) Much fuller 
descriptions can be found in the Pajek manual and in de 
Nooy, Mrvar and Batagelj (2011).
	 There are six horizontal panels in the main 
body of the window for Networks, Partitions, Vectors, 
Permutations, Cluster and Hierarchy. Under each of 
these names are some icons. Reading from the left the 
icons are used to read Pajek files, save Pajek files, view 
or edit a file that has been read (or created in Pajek) and 
obtain information about that file. We use the Networks 
horizontal panel for identifying and counting fragment 
types. There are horizontal lines in this panel and two are 
used for fragment searching as described below. The first 
line will contain the fragment with the second containing 
the network within which the search is done.

4. Two Empirical Signed Networks

4.1 Analyses for a directed signed network

Section 4.1.1 focuses on the global-level analysis of 
counting all of the signed triples in an empirical network 
and presenting the results. In addition, given such 
distributions, it is natural to ask about the involvement 
of specific or all egos in them. This is considered briefly 
in Section 4.1.2 before returning to the measurement of 
imbalance in signed networks.

4.1.1 Counting all triple types

We demonstrate doing this for larger and/or more complex 

1  Given the data were collected a long time ago it is not surprising the data collection design was fixed choice for all actors. While there are 
drawbacks with this design, they are irrelevant for demonstrating the signed fragments analysis.

networks by identifying and counting the triples of Figure 
1 as the fragments to be identified in the network shown 
in Figure 4.  The data come from Lemann, and Solomon 
(1952). Women in a college were asked about signed 
preferences about whom the women would like or not like 
to do activities. Each woman was asked to name others 
but did not know the preferences of anyone else in their 
group. The data for all four relations were reanalyzed 
from a blockmodeling perspective (Doreian, 2008). 
	 The data used here feature one relation (going 
on a double date) as shown in Figure 4. Blue lines 
represent positive ties and red lines show negative ties. 
Some positive and some negative ties are reciprocated. 
For visual simplicity, pairs of positive reciprocated arcs 
are represented by solid blue edges rather than by two 
arcs. Pairs of negative reciprocated arcs are represented 
by dashed red edges rather than by two arcs. Remarkably, 
some reciprocated pairs have opposite signs (e.g. m-r and 
j-s). There are 21 vertices with 63 positive arcs and 63 
negative arcs.1 We provide these data in the zipped file 
available at: http://mrvar.fdv.uni-lj.si/pajek/SVG/CoW/
cow.zip.
	 Table 1 shows each of the eight triples in Figure 
1 written out as Pajek network files. These define a set of 
fragments that were contained in a Pajek project file (see 
below) to facilitate fragment searching. This project file 
is provided in the zipped file as well.
	 The first listed network (as a fragment) has three 
lines at the top started by *: a signal to Pajek as to how 
the line in the file is to be read. Having the * start these 
lines is mandatory. The first line gives its name ‘Network 
Only Positive’, the second gives the number of vertices 
(there are three) and the third gives the type of lines in the 
network (arcs). The next three lines contain the data with 
positive ties. The first network in the second column is 
the first imbalanced triple (bottom left in Figure 1). There 
are three imbalanced triples with a single negative tie. We 
keep them distinct by giving them different names as they 
are searched for separately.
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Balanced Triples Imbalanced Triples
*Network Only Positive (B1) *Network One Negative /1 (U1)
*Vertices 3 *Vertices 3
*Arcs *Arcs
1 2 1 1 2 1 
1 3 1 1 3 -1
2 3 1 2 3 1
*Network Two Negative /1 (B2) *Network One Negative /2 (U2)
*Vertices 3 *Vertices 3
*Arcs *Arcs
1 2 1 1 2 1
1 3 -1 1 3 1
2 3 -1 2 3 -1
*Network Two Negative /2 (B3) *Network One Negative /3 (U3)
*Vertices 3 *Vertices 3
*Arcs *Arcs
1 2 -1 1 2 -1
1 3 -1 1 3 1
2 3 1 2 3 1
*Network Two Negative /3 (B4) *Network Only Negative (U4)
*Vertices 3 *Vertices 3
*Arcs *Arcs
1 2 -1 1 2 -1
1 3 1 1 3 -1
2 3 -1 2 3 -1
The labels B1, B2, B3 and B4 are the same 
as in Figure 1. (The secondary labels /1, 
/2 and /3 are for the three types of triples 
having two ties that are negative.)

The labels U1, U2, U3 and U4 are the 
same as in Figure 1. (The labels /1, /2 and 
/3 are for the three types of triples having 
one tie that is negative.)

Note: The eight fragments are stored after each other in one column in Pajek, not in two panels.

Figure 4. A Directed Signed Relational Network
Notes: Blue solid lines - positive relation; red dashed lines - negative relation

Table 1: The eight network fragments defined by the triples in Figure 1.
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A particularly useful feature of Pajek is the option for 
saving Pajek project files. At any stage of an analysis, most 
usefully at a provisional end, all of the objects that have 
been defined can be saved to a project file with a single 
command. This project file can then be read subsequently 
by Pajek. Clicking on File in the top row of Pajek’s main 
window opens a dialogue box in which two of the options 
are for saving and reading Pajek project files which will 
have the extension paj. For fragment identification, the 
networks defined by the fragments can be stored in such a 
project file. This means the fragments can be defined once 
and then recalled for each new analysis. For structural 
balance with arcs, the eight networks defined by the 
triples of Figure 1 are stored in a project file as shown 
in Table 1. The project file for them has a single column 
rather than the two shown in the table. It is provided in 
the zipped file. The starting * for each fragment is read by 

Pajek as signaling a new fragment. When the file is read, 
all of the fragments are read but each fragment search is 
done separately.	
	 The network file in which the searching is done 
has a similar structure but will be much larger with 21 
vertices, and each is listed on a separate line with the 
network ties also listed on separate lines. The steps in 
Pajek for extracting these types of triples and counting 
them are as follows:

Getting the data into Pajek:
•	 Read the data from a network file (*.net) with * 

replaced by the file’s name.2

•	 Read the Pajek project file (with the form 
(*.paj). (We labeled this as balancefragarcs.paj 
as it contains the eight triple types for use with 
any signed directed network. The label name is 
arbitrary.)

Mobilizing Pajek to determine and count the types of 
triples

•	 Select the each fragment type (one at a time) 
from the Pajek project file as the first network.

•	 Select the network data as the second network.
•	 Check Networks from the top menu bar in Pajek 

(to open a dialogue box).

2 There are two conventions for use a * that need to be kept distinct. The one described thus far for Pajek files in this paper is internal to 
Pajek. The second convention is for all files when it is used a token for any name of a file. Users are free to choose their own names for files. 
The network with the data of figure 4 was called haddate1.net. Again, the file name is arbitrary. The data are provided in the zipped file. We 
recommend strongly that Pajek users upgrade always to the most recent version. When this paper was finalized. The Pajek version was 4.04. 
Older versions required that there be no spaces in Pajek file names. This is no longer the case.

Balanced Imbalanced
Triple type Count of 

triples
Triple type Count of 

triples
Only positive 65 One Negative/1 8
Two Negative/1 57 One Negative/2 6
Two Negative/2 25 One Negative/3 21
Two Negative/3 22 One Negative 20

Table 3: Counts of signed triples for the directed signed network

Table 2. Options for the searching for fragments procedure
Notes: The dialogue box on the left shows the options for obtaining the triples of Table 1 as fragments in the network shown in Figure 4.
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Vertex a   b   c   d   e   f   g   h   i    j   k   l   m   n   o   p   q   r    s   t   u
Fragment Count 2   4   0   5   5  6   1   2  4   0   3   3   8   0   2   1   4   3   4   5  1

Table 4. The distribution of the number of times vertices are present in ‘One Negative/3’ triples

Vertex a   b   c    d    e   f    g   h    i    j   k    l   m   n    o    p    q   r    s   t    u
Fragment Count 1   3   6    9   0   4    1   0   0   3   0    7   1   4    6    0    2   7   4   2   0

Table 5. The distribution of the number of times vertices are present in ‘Only Negative’ triples

•	 Check ‘Fragments (First in Second)’ in this 
dialogue box. This opens another small dialogue 
box with the options shown in Table 2.

•	 Select the appropriate options.
•	 Check Find 

Table 2 shows two alternatives for selecting options 
for finding fragments. In the left panel, the options we 
selected for completing the above analysis were: ‘Check 
values of lines’ and ‘Extract subnetwork’. These choices
are the checked boxes in the left panel of Table 2. They 
are appropriate for the directed network in Figure 4. An 
alternative set of options is shown in the right panel. 
When these options are used for obtaining the signed 
fragments in Figure 4 the outcomes are incorrect. 
However, both sets of options led to the same outcomes 
for the undirected network in Figure 2. Care is needed in 
selecting options as they can produce different outcomes 
depending on the structure of the network and the goals 
of the analysis.	
	 Directed signed networks present problems 
for using the right hand set of options when there are 
reciprocated ties present. This holds regardless of 
whether these ties have the same sign or different signs. 
The directed network in Figure 4 has such dyads. When 
checking ‘Induced’ in Fragment options, such triples are 
not counted as correct triads (since there are additional 
arcs not only the ones needed for fragment). For 
undirected networks, this issue does not arise.
	 The number of fragments when Find is checked 
in the fragment dialogue box will appear in the output 
appearing on the screen. The counts of the signed 
fragments are shown in Table 3. At face value, the 
proportion of balanced triples for Table 3 is 169/224 = 
0.75 indicating more balance than imbalance. However, 
the blockmodel analysis of Doreian (2008) showed there 
were more than two positions (clusters) of the actors. 
This value for imbalance is not appropriate. Fortunately, 
the Davis (1967) formulation provides a solution.
	 As noted above, the Davis generalization of the 
initial structure theorem of Cartwright and Harary (1956) 
dealt with networks having more than two positions by 

defining it as balanced. Indeed, a strong general case 
can be made for not considering it as imbalanced when 
there are more than two positions. When this is done, the 
measure of balance is 189/224 = 0.84, more consistent 
with the small line index of balance obtained from the 
signed blockmodel. We note that the blockmodel fitted 
according to the method presented in Doreian and Mrvar 
(2009) contains a negative diagonal block.

4.1.2 Ego-level properties for fragments

Given the primary purpose of this paper, the above task 
completion is enough. But having identified fragments, a 
natural avenue of inquiry is to think about specific vertices 
being located within fragments. In addition to the global 
result of counted fragment types, Pajek also provides 
ego-level results. Table 3 shows, among other things, 
there are 21 triples of the type labeled ‘One Negative/3’. 
We can ask about the frequency with which the vertices 
are present in this type of triple. The results are shown 
in Table 4. In terms of frequencies, vertex m heads the 
list by belonging to eight of these triples. Vertex f comes 
next with six followed by d, e, and t each with five. At 
the other extreme, vertices c, j and n belong to none. The 
sum of fragment counts in the bottom row of Table 4 is 63 
(there are altogether 21 triples, each contains 3 vertices).
	 The same type of analysis can be done for each 
of the types of triple. As one further example, consider 
membership in the all-negative triples, labeled ‘Only 
negative’. The results are shown in Table 5. This time, 
vertex d heads the list with nine such memberships 
followed by vertices l and r with seven of them. There are 
six vertices having no involvement in all-negative triples. 
Of some interest is vertex m which had the highest count 
for the triples in Table 4 but is very low regarding the 
memberships in all-negative triples. 
	 It seems clear that the place of specific vertices 
can be assessed through the types of triples defined in 
terms of structural balance. This suggests ways of cou-
pling global features of a signed network expressed in 
triple types and the involvement of egos in them.
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4.2 Measuring imbalance in an undirected network

We return to the main theme of this paper by showing 
how to measure imbalance in signed networks using a 
much larger network with undirected ties. This larger 
network introduces some new methodological issues as 
discussed in Doreian and Mrvar (2015).
	 This undirected signed network has 64 vertices 
and 362 edges. The vertices represent countries which 
are linked by positive and negative ties. This example 
is taken from the Correlates of War (CoW) project for 
nations in the world system following WWII.3 This 
network is for the period 1946-1949. The positive ties 
are for joint memberships in alliances, unions and inter-
governmental agreements. The tie is binary. The negative 
ties are for being at war, in conflict with each other 
without military involvement, border disputes and sharp 
ideological or policy disagreements. When there is a 
negative tie between states that otherwise have a positive 
tie, the negative tie is used. There are 320 positive edges 
and 42 negative edges. In contrast to the small network 
in Figure 4, there is a major difference in the number of 
positive and negative ties. While this raises some issues 
regarding the measures of imbalance, the counting of 
signed triples is not affected. The network is shown in 
Figure 5. The design of the layout reflects a blockmodel 
fitted according to balance theoretical ideas. The colors of 

3 See http://www.correlatesofwar.org/. The data were provided kindly by Daniel Halgin of the Links program at the University of Kentucky. 
They were constructed as part of a larger project on signed networks. We appreciate greatly his generosity. 

the vertices represent membership in clusters (positions) 
determined by blockmodeling (see Doreian and Mrvar, 
2015 for details).
	 When there are only edges in the signed network, 
the counting of fragments takes the form of counting 
signed 3-cycles with edges. The number of possible 
signed 3-cycle types is four. There are only two balanced 
and two imbalanced 3-cycles. Considering the triples in 
the top panel of Figure 1, but with edges instead of arcs, 
there is the all positive 3-cycle. All of the other triples with 
edges have the same structural form with two negative 
edges. From the bottom panel, an all negative 3-cycle is 
present and the other three imbalanced triples with edges 
have the same structural form with one negative edge. As 
a result, the Pajek project file with the fragments has the 
four networks shown in Table 6. The actual project file 
used is provided in the zipped file. The steps required for 
obtaining these signed 3-cycles are the same as for the 
first example only a different Pajek project file with only 
these four types of 3-cycles was used with the fragments. 
The relevant counts are shown in Table 7. 
	 The blockmodel shown in Figure 5 through the 
coloring of the vertices makes it clear there are more 
than two positions in the world system. The appropriate 
measure of balance, given the Davis (1967) formulation, 
is 0.966 (1593/1656). Were the all-negative triple 
considered as imbalanced, the measure of balance would 

Figure 5. The CoW signed undirected network for 1946-49
Notes: Solid lines represent positive ties with dashed lines representing negative ties
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be 0.954 (1579/1656).4 Either way, the signed network of 
nations following WWII was highly balanced. By itself, 
this is of modest interest. Whether balance (or imbalance) 
changed over time has greater interest value. Even more 
important is how – and why - the measures of balance/
imbalance changed over time. We consider this in Section 
5.

5. Measuring and tracking imbalance through time

The larger data set has signed networks for 51consecutive 
time points. The network expanded from having only 64 
nations to a maximum size of 155 because new nations 
joined the world system through gaining independence 
or being formed through dissolution of states, especially 
the USSR and the former Yugoslavia. Nations having few 
ties can drop out when these ties are severed or can join 
the international network when new ties involving them 
are created. 
	 In terms of identifying fragments and counting 
them, the above procedure is repeated for each time 
point. However, as the same commands are going to be 
repeated for every time point the procedure can be made 
more efficient by using Pajek’s ‘Repeat last command’ 
feature. The modified Pajek commands are:

•	 Load all 51 networks and 4 fragments in Pajek. 
This can be done most easily by having all of the 
networks stored in a Pajek project file as they 
will be loaded in one step.

•	 Select the first fragment (from the fragments 
project file) as the First Network.

•	 Select the first loaded network as the Second 
Network.

•	 Run Fragments searching as described above.
•	 Check ‘Repeat Last Command’. (This will open 

another small dialogue box with further options 
appearing.)

•	 Check the ‘Fix (First) Network’ button in this 
dialog box. Doing this sets Pajek up to search for 
the same fragment in all of the rest of networks, 
starting with the second network.

•	 Check the ‘Repeat Last Command’ button and, 
when asked for the number of repetitions, enter 
50 (as there are 50 more networks for which 
first fragment should be found). In general, this 
entered number will change depending on the 
number of networks in which fragments are 
sought. Pajek then searches for this fragment in 
all of the networks that were loaded.

•	 To search for other types of fragments (as loaded 
from the fragment Pajek project file) in all of 
the networks (i.e. in this case all 51 time points) 
execute the above sequence of commands for 
each of the remaining fragments.

Balanced 3-cycles Imbalanced 3-cycles
*Network Only Positive Undirected *Network Only Negative Undirected
*Vertices 3 *Vertices 3
*Edges *Edges
1 2 1 1 2 -1
1 3 1 1 3 -1
2 3 1 2 3 -1
*Network Two Negative Undirected *Network one Negative Undirected
*Vertices 3 *Vertices 3
*Edges *Edges
1 2 1 1 2 -1
1 3 -1 2 3 1
2 3 -1 1 3 1

Note: The four fragments are stored after each other in one column in Pajek, not in two panels
Table 6. The four network fragments defined by 3-cycles

4 The corresponding measures of imbalance are 0.034 and 0.046 respectively.
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One additional result of the ‘Repeat Last Command’ is 
a Vector called  ‘Number of Fragments’ in which counts 
of all fragments for all 51 time periods are stored. The 
counts of fragments can be stored and organized by the 
time points. Figure 6 shows the results of computing the 
proportions of balanced signed triples for each time point. 
Clearly, there were huge changes in the levels of balance 
(and imbalance depending how the system is viewed.) Of 
course, the next task for a broader project is to account 
for the changes by coupling them to events taking place 
in the world over time. This will be no easy task but, for 
our purposes here, the task of tracking changes in balance 
has been completed. A preliminary effort at doing this is 
contained in Doreian and Mrvar (2015).
	 Figure 6 makes it clear that the level of imbalance 
varied greatly over time. One of the empirical hypotheses 
espoused by structural balance theorists was that signed 
networks moved towards a balanced state. Even with 
the early small group datasets that were examined, the 
empirical evidence tended not to be consistent with 
this hypothesis. See, for example, Doreian et al. (1996) 
and Hummon and Doreian (2002). The hypothesis of 
movement towards balance, even though Heider’s initial 
formulation made it seem very plausible, was not a 
fruitful longer-term hypothesis for the field: it led to a 
one-directional view regarding change in signed networks 
towards balance and obscured a more important question. 
See Doreian and Mrvar (2015). A more fruitful line of 
inquiry is to ask about the conditions under which signed 
systems do move towards balance and the conditions 
under which they move away from balance.
	 Another issue addressed by Doreian and Mrvar 
(2015) is the utility of the proportion of balanced triples 
when the number of positive ties far exceeds the number 
of negative ties. The same issue would occur if the 
number of negative ties exceeded the number of positive 
ties by a wide margin. This issue has been obscured by 
the ways in which data have been collected hitherto. For a 
comparison with the blockmodeling approach when there 

Balanced Imbalanced
Triple type Count of 

triples
Triple type Count of 

triples
Only positive edges 1556 One negative edge 63
Two negative edges 23 Only negative edges 14

Table 7. Counts of signed 3-cycles for the undirected signed network

are disproportional numbers of signed ties, we argue the 
best comparison is between the number5  of imbalanced 
triples and the line index of imbalance. The temporal plot 
of imbalance using this measure is shown in Figure 7. 
The correlation between the line index of imbalance and 
the number of imbalanced triples is 0.91.  The contrast 
between the trajectories shown in Figure 6 and 7 is 
discussed further in Doreian and Mrvar (2015).  
	 While there is no reason to expect a perfect 
correspondence between these two measures, they are 
tracking something in a similar fashion.  One reason for 
the slight difference between these measures is that the 
line index is constructed for the networks as a whole 
while counting triples or 3-cycles is far more local. 
Longer cycles and semi-walks are not counted when 
only triples are considered. However, as noted above, 
for studying the balance theoretic dynamics of signed 
networks, such longer fragments have far less utility. For 
a blockmodeling analysis, the line index is preferable as it 
is integral to the delineation of the blockmodel structure 
of a signed network. But if all that is required is a useful 
measure of the change in balance of a signed network, 
then using triples provides a simple measure that is far 
easier to use than conducting blockmodeling for as many 
networks as were considered for the CoW data.
	 Regardless of how this issue of the difference 
between using proportion or number of imbalanced 
triples to measure imbalance is resolved, the role of 
counting fragments is clearly useful. The debate will be 
one of examining the relative merits of the number of 
imbalanced triples and the proportion of them and will 
depend on the signed networks that are studied. This will 
hinge on the relative number of positive and negative ties 
in the signed network.6

6. Conclusion and extensions

A simple method for tracking change in the levels of 
structural balance (or imbalance) of a signed network was 

5 A very strong case can be made for discounting the presence of the all-positive triples as they are the most frequent type of triple in these data. 
The real interest in terms of balance theoretic phenomena involves the negative ties and how they are changed over time.
6 For readers interested in analyzing the temporal data, they can be found at the following link:
http://mrvar.fdv.uni-lj.si/pajek/SVG/CoW/. A zipped version containing all of the data files can be found at: http://mrvar.fdv.uni-lj.si/pajek/
SVG/CoW/cow.zip. The data file for the network shown in Figure 5 is N46.net. The other networks for successive periods are numbered in a 
similar fashion.
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presented for signed networks through using fragment 
identification and then counting them. If needed, this 
approach can be applied to much larger networks than 
the examples presented here. Of equal importance, the 
idea of fragments is far more general than this application 
for signed networks might suggest. Our hope is that it 
will be used more often in social network analysis as a 
way of characterizing network structure depending on the 
substantive concerns of researchers.
	 There is another possible way in which 
imbalance could be measured. It is the number of vertices 
whose removal creates a balanced network. This is also 
an NP-hard computational problem. It may be that the 

Figure 6. Tracking the proportion of imbalanced triples through time for a changing network.
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Figure 7. The number of imbalanced 3-cycles over time for the CoW data.

distributions of vertices in imbalanced triples could be 
used to address this issue. Also, further exploration of 
coupling of global imbalance with the local imbalance at 
vertices merits further attention.
	 The data for the network in Figure 5 is the 
first of a sequence of 51 networks. Over time, this 
network expanded considerably. This raises the issue of 
considering the impact of changing system size on the 
number of fragments present in the network. Doreian and 
Mrvar (2015) showed that the number of signed triples 
with negative edges did not expand greatly save for the 
all-positive triples which exploded. This was due to the 
expansion of positive ties which were far less costly 
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to maintain than the negative triples for countries. The 
impact of extreme disproportions in the numbers of 
positive and negative ties may be more consequential 
than changes in the number of units in the network.
 Regarding balance, a more general problem occurs 
when signed networks (or their closest to balance form) 
do not conform to the blockmodel structure implied by 
the structure theorems. The CoW data have positive 
blocks off the main diagonal and negative blocks on 
the main diagonal of the blockmodel. The coloring of 
the vertices in Figure 5 comes from a blockmodel fitted 
according to relaxed structural balance (Doreian and 
Mrvar, 2009). Within the blockmodeling approach to 
signed networks there are two general concerns. One 
is the delineation of the blockmodel structure with the 
other being establishing a measure of imbalance for the 
network as a whole. The correspondence between the line 
indices from such blockmodels and the counts of triples 
has not been explored.  Examining this relationship is 
ongoing. However, for signed networks with forms close 
to those anticipated by the structure theorems, using 
measures based on identified triples and 3-cycles will be 
fully appropriate. They may be more practical measures 
of balance or imbalance if blockmodeling becomes 
impractical or too time consuming. Moreover, their 
simplicity makes them easy to interpret.
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