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Abstract

We extend the direct approach for blockmodeling one-mode data to two-mode data. The key idea
in this development is that the rows and columns are partitioned simultaneously but in different ways.
Many (but not all) of the generalized block types can be mobilized in blockmodeling two-mode
network data. These methods were applied to some ‘voting’ data from the 2000–2001 term of
the Supreme Court and to the classic Deep South data on women attending events. The obtained
partitions are easy to interpret and compelling. The insight that rows and columns can be partitioned
in different ways can be applied also to one-mode data. This is illustrated by a partition of a
journal-to-journal citation network where journals are viewed simultaneously as both producers
and consumers of scientific knowledge.
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1. Introduction

Blockmodeling tools were developed to partition network actors into clusters, called po-
sitions, and, at the same time, to partition the set of ties into blocks that are defined by the
positions (seeLorrain and White (1971), Breiger et al. (1975), Burt (1976)for the foun-
dational statements). For these authors, and those using their methods, the foundation for
the partitioning was structural equivalence.White and Reitz (1983)generalized structural
equivalence to regular equivalence as another principle for blockmodeling networks. For all
of these authors, the use of blockmodeling tools was inductive in the sense of specifying an
equivalence type and searching for partitions that approximated those equivalence types.1
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1 An exception isHeil and White (1976)but their algorithm did not enjoy widespread usage for blockmodeling.
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The procedures were indirect in the sense of converting network data into a (dis)similarity
matrix and using some clustering algorithm.Batagelj et al. (1992a,b)suggested an alterna-
tive strategy where the partitioning was done by using the network data directly. In essence,
their approach was built upon the recognition that both structural and regular equivalence
define certain block types if a partition of actors and ties isexactand consistent with the type
of equivalence. For structural equivalence, the ideal blocks are null and complete (Batagelj
et al., 1992a), and for regular equivalence, the ideal block types are null and regular (Batagelj
et al., 1992b). Subsequently, blockmodeling was generalized to permit many new types of
blocks (seeBatagelj (1997)andDoreian et al. (1994)). The notion of constructing blockmod-
eling in terms of a larger set of block types, together with the use of optimization methods
mobilized within a direct approach is calledgeneralized blockmodeling(Doreian et al.,
2005). Hitherto, these methods have been applied only to one-mode network data. Here,
we consider another extension of blockmodeling by including two-mode network data.

2. Two-mode network data

Wasserman and Faust (1994, Chapter 8)provide a discussion of affiliation networks as
two-mode data. In essence, two-mode data are defined for two sets of social units and
contain measurements of a relation from the units in one set to units in the other set. Pairs of
network actor types and relations include: people attending events, organizations employing
people, justices on a court rendering decisions, and nations belonging to alliances. The most
used example of a two-mode network is the Deep South data, also known as the ‘Southern
Women’ data, collected byDavis et al. (1941)for a set of women attending social events
over a 9-month period. We consider these data shortly as our second example.

3. Approaches to two-mode network data

In a two-mode network,N = (U1,U2, R, w), one set of social units is denoted byU1 =
{u1, u2, . . . , un1} and the second set of units is denoted byU2 = {v1, v2, . . . , vn2}. By
definition,U1 ∩ U2 = ∅. The social relationR ⊆ U1 × U2 is defined as one between the
units in these two sets and is represented by the set of lines (which can be arcs or edges) with
initial vertices in the setU1 and terminal vertices in the setU2. The mappingw : R → R is
a weight. Two examples of weighted two-mode networks are (persons(U1) goods/services
(U2), consumed (R), frequency (w)) and (countries(U1), countries(U2), imported from (R),
value (w)). If no weight is defined we can assume a constant weightw(u, v) = 1 for all
uRv.

Many network analytic tools have been used to study the structure contained in two-mode
data with distinct ways of representing this type of data. We focus here on the approaches
that are primarily algebraic. One takes the form of using arectangularn1 × n2 matrix
A = [auv] to represent the data for the two sets of units,U1 andU2.

auv =
{

w(u, v), uRv

0, otherwise
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This (rectangular) matrix can be binary or valued. For two of the examples that follow,A
has a binary form. The third example that we consider involves valued data.

A two-mode network can be viewed also as an ordinary (one-mode) network on the
vertex setU1 ∪ U2, divided into two disjoint setsU1 andU2, where the arcs can only go
from U1 to U2—it is a bipartite directed graph.Borgatti and Everett (1997: 248)provide a
pictorial representation of a bipartite graph for the Southern Women data set and advocate
the inclusion of analyses of the bipartite matrix, in this form, in the analysis of two-mode
data.Freeman (2003)also displays the Southern Women data in this fashion.

One algebraic approach to two-mode data takes the form of exploring the ‘duality’ of
two-mode data (Breiger, 1974) by constructing two valued one-mode networks. The matrix,
A1 = AAT, where T denotes transposition, is in one-mode form for the actors inU1 and
A2 = ATA is in one-mode form for the actors inU2. Analyses then are conducted by using
these two one-mode representations.

Atkin (1974) introduced Q-analysis as a way of delineating the structure of the dual
simplicial complexes ofA1 andA2. Doreian (1979)analyzed the structure of the South-
ern Women data using these tools.Freeman (1980)provides another example of using
Q-analysis for network data andSeidman (1981)provides a related discussion in terms
of hypergraphs. Galois lattices provide another algebraic approach to two-mode data, one
taken byFreeman and White (1994)who also applied these methods to the Southern Women
data. OnceA1 andA2 have been constructed as one-mode matrices, all of the conventional
techniques for analyzing one-mode data can be used.

4. Blockmodels for two-mode network data

Thinking of applying generalized blockmodeling tools to two-mode data implies mak-
ing some adjustments to this set of techniques, as well as the thinking behind them.
Because the data come in the form of rectangular arrays the language of diagonal and
off-diagonal blocks is no longer applicable. Blockmodels applied to (the usual) ‘square’
network data, require that the rows and columns are partitioned simultaneously in ex-
actly the same way. It makes no sense, conceptually and technically, to partition rows and
columns of a rectangular array in the same fashion. In this paper, the rows and columns
of the rectangular arrayare partitioned at the same timebut they are partitioned
differently.

We do not regard the use of partitioning tools for the above matrix representation of the
bipartite graph (usingA, AT and two null matrices) as appropriate. The reason is simple: it
is possible to havemixturesof the twodistinct typesof actors in the same cluster. Indeed,
exactly this happened withBorgatti and Everett (1997)partition of the bipartite network
in this form for the Southern Women data. We propose the following procedure toensure
that actors of different types areneverclustered together: the two-mode data are treated as
two-mode data.

We establish a simple notation givenU1 = {u1, u2, . . . , un1}andU2 = {v1, v2, . . . , vn2}.
Let k1 be the number of clusters for actors inU1 and letk2 the number of clusters of actors
in U2 Clearly, 1 ≤ k1 ≤ n1 and 1≤ k2 ≤ n2. While it is possible to consider up ton1
andn2 for the number of clusters of the two sets of actors, the point of the blockmodeling
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effort is to use fewer clusters than actors. We will label a partition withk1 clusters of the
actors in (U1) andk2 clusters of the actors in (U2) as a (k1, k2)-partition of the two-mode
array.

5. A formalization of blockmodeling two-mode data

The theoretical background for two-mode blockmodeling comes fromBatagelj et al.
(1992a,b); Doreian et al. (1994); Batagelj et al. (1998): we view the blockmodeling of
two-mode data as a simple extension of one-mode blockmodeling.

The main difference is that in blockmodeling of a two-mode networkN = (U1,U2, R, w)

we are trying to identify a two-clusteringC = (C1, C2)− whereC1 is a partition ofU1 and
C2 is a partition ofU2—such that they induce blocks of the selected types. We denote the
set of all feasible two-clusterings withΦ. The blockR(Cu, Cv) is defined byR ⊆ U1 × U2
restricted toCu ⊆ U1 andCv ⊆ U2.

The two-mode generalized problem can be formulated as an optimization problem (Φ,
P, min):

Determine the two-clusteringC∗ = (C∗
1, C∗

2) ∈ Φ for which

P(C∗) = min
C∈Φ

P(C)

whereΦ is the set of feasible two-clusterings andP is the criterion function.
The criterion functionP(C) is obtained in the same way as in the ordinary case:

P(C) = P(C1, C2) =
∑

Cu∈C1,Cv∈C2

min
B∈B(Cu,Cv)

δ(R(Cu, Cv), B)

whereB(Cu, Cv), Cu ⊆ U1 andCv ⊆ U2 denote the set of all ideal blocks corresponding
to block R(Cu, Cv), and the termδ(R(Cu, Cv), B) measures the difference (number of
inconsistencies) between the blockR(Cu, Cv) and the ideal blockB. The value ofδ is
constructed on the basis of the characterizations of the types of blocks in such as fashion
that makesδ compatible with the selected type of equivalence (seeBatagelj et al. (1992a)
andBatagelj (1997)). The criterion functionP(C1, C2) is sensitive iffP(C1, C2) = 0 ⇔
the blockmodel determined by (C1, C2) is exact.

The resulting optimization problem can be solved by a local optimization procedure as fol-

lows:

Determine the initial clusteringC
repeat

when in the neighborhood of the current clusteringC
if there exists a clusteringC′ such thatP(C′) < P(C)
then move to clusteringC′

Usually, theneighborhoodis determined by two transformations:movinga unit from one
cluster to another cluster;interchangingof two units between different clusters. The pro-
cedure is repeated for many initial clusterings and the (those) partition(s) with the smallest
value of the criterion function are selected. Once the partitions (C1, C2) and types of blocks
are determined, we can also compute the values of connections by using averaging rules.
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6. Three empirical examples

We consider three examples. One features some of the some decisions handed down by
the US Supreme Court in their 2000–2001 term. The second comes in the form of the Deep
South data discussed above and the third is a journal-to-journal citation network.

6.1. Supreme Court Voting

These data come from the simple (preliminary) study byDoreian and Fujimoto (2003)
of the Supreme Court Justices and their ‘votes’ on a set of 26 “important decisions”. These
data are presented inTable 1. The nine Justices (in the order in which they joined the
Supreme Court) are Rehnquist (1972), Stevens (1975), O’Connor (1981), Scalia (1982),
Kennedy (1988), Souter (1990), Thomas (1991), Ginsburg (1993) and Breyer (1994). The
distribution of votes are organized in terms of the substantive content of the selection of
decisions as organized byGreenhouse (2001).

Each row ofTable 1represents a decision handed down by the Supreme Court. On the
left is a descriptive label for that decision. A much fuller description of these case can be
found inGreenhouse (2001)and inDoreian and Fujimoto (2003). The substantive details of
these cases, while stark, are of secondary concern here. The columns correspond to the nine
Justices where the Justices are represented by a label: Breyer (Br), Ginsburg (Gi), Souter
(So), Stevens (St), O’Connor (OC), Kennedy (Ke), Rehnquist (Re), Scalia (Sc) and Thomas
(Th). In these data, a ‘+’ in the column of a Justice represents voting in the majority for that
issue and a ‘−’ represents voting in the minority for that decision. The decisions range from
the unanimous decision2 in the case involving the Clean Air Act to many 5-4 decisions.
The latter suggest an ideologically divided court.

In the usual representation of such data,A is written with the actors (in this case the
justices) in the rows and the events (in this case the decisions) in the columns.Table 1has
been written as the transposed form for formatting reasons. In terms of the analysis that
follows, rows ofA represent the justices and the columns their decisions.

Doreian and Fujimoto viewed these data as ‘signed’ two-mode data. They constructed a
matrix, Ap, for majority voting where 1 represented a majority vote and 0 a votethat was
not for the majority (i.e. either a vote against the decision or an abstention). Similarly, they
constructed a matrixAn for the negative votes for a decision, where 1 represented a vote in
the minority and 0 represented either an abstention or a vote with the majority. Their analyses
involved (for a focus on the justices)ApAT

p for majority voting,AnAT
n for minority voting

andAt whereAt = ApAT
p + AnAT

n for all voting. Their analyses were designed to explore
the differing patterns of joint majority voting, joint minority voting and joint overall voting
patterns. They used a combination of tools including Q-analysis and partitions based on
structural equivalence for the generated one-mode matrices. Some nuanced interpretations
follow as a result of looking at the differences between majority and minority voting patterns.
As a result of these different analyses, they reached a partition—having four clusters of
justices and eight clusters of decisions—with 13 inconsistencies with an ideal partition

2 There is one case that was unanimous except for Breyer who abstained because his brother had ruled on the
case at a lower court level.
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Table 1
Supreme Court Voting for 26 important decisions

Issue Br Gi So St OC Ke Re Sc Th

Presidential election − − − − + + + + +
Criminal law cases

Illegal Search 1 + + + + + + − − −
Illegal Search 2 + + + + + + − − −
Illegal Search 3 + + + − − − − + +
Seat Belts − − + − − + + + +
Stay of execution + + + + + + − − −

Federal authority cases
Federalism − − − − + + + + +
Clean Air Act + + + + + + + + +
Clean water − − − − + + + + +
Cannabis for health 0 + + + + + + + +
United Foods − − + + − + + + +
New York Times copyrights − + + − + + + + +

Civil rights cases
Voting Rights + + + + + − − − −
Title VI disabilities − − − − + + + + +
PGA vs. handicapped player + + + + + + + − −

Immigration law cases
Immigration Jurisdiction + + + + − + − − −
Deporting Criminal Aliens + + + + + − − − −
Detaining Criminal Aliens + + + + − + − − −
Citizenship − − − + − + + + +

Speech and press cases
Legal Aid for the Poor + + + + − + − − −
Privacy + + + + + + − − −
Free Speech + − − − + + + + +
Campaign Finance + + + + + − − − −
Tobacco Ads − − − − + + + + +

Labor and property rights cases
Labor rights − − − − + + + + +
Property rights − − − − + + + + +

based on structural equivalence.3 Here, we focus on the two-mode data as given inTable 1
and use a direct partition of the two-mode data with four clusters of the justices and seven
clusters of the decisions:4 i.e. a (4, 7)-partition in the notation ofSection 3. The clustering of
the justices is identical with the partition reported by Doreian and Fujimoto. The difference
between to two procedures comes with the partition of the decisions.

Fig. 1 shows thefitted blockmodel for structural equivalence where four clusters were
specified for the justices and seven clusters were specified for the decisions.

3 The value of the criterion function for their reported partition was computed for the partition they reported and
was not used as a part of their partitioning methods.

4 In selecting this particular partition we were helped by the partition reported byDoreian and Fujimoto (2003).
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Fig. 1. A (4, 7)-partition of the Supreme Court Voting.

For the justices, two of the four clusters are{Breyer, Ginsburg, Souter, Stevens}, and
{Rehnquist, Scalia, Thomas} that can be viewed, respectively, as the liberal and conservative
wings of the Supreme Court (Doreian and Fujimoto, 2003). The two singletons, O’Connor
and Kennedy can be interpreted in several ways. In one interpretation, they can be seen
as justices that form a bridge between the two wings. Alternatively, they can be viewed as
being a part of the conservative wing that joins with the liberal wing onsomeof the issues
that come before the court. Kennedy is the justice who most often is a part of the majority
(22 times in the 26 decisions considered here). O’Connor is in the majority for 19 of the
decisions.5

For the set of 26 decisions, the first cluster on the left (on top) inFig. 1are decisions where
the conservative core plus O’Connor and Kennedy won with a narrow 5-4 vote plus the Free
Speech case where Breyer joins the majority. His vote on this issue is an inconsistency with
a perfect structural equivalence partition. The second cluster of cases (on the left) has the
Seat Belts, United Foods and the Citizenship cases. For these decisions, the conservative
core plus Kennedy are joined by justices from the liberal wing. Justices Souter and Stevens
each joins them twice. These four votes from the liberal wing are all inconsistent with the
ideal null block specified under structural equivalence for these three cases. They are the
black squares in the block defined by these decisions and the liberal wing cluster. Justice
O’Connor’s votes are all consistent with a structural equivalence partition for these three
cases because she was a singleton and voted in the minority for each of these cases. The
third cluster from the left has the cases concerning the Clean Air Act, Cannabis and the
New York Times cases. The conservative core of Rehnquist, Thomas and Scalia are joined
by both Kennedy and O’Connor together with at least one member of the liberal wing of
the court. The inconsistencies with structural equivalence are the white squares in the block
defined by these cases and the liberal wing.

5 These two justices are differentiated byDoreian and Fujimoto (2003)in terms of minority voting,An, where
O’Connor has a bridging role not shared by Kennedy.
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Fig. 2. The Bipartite Supreme Court Network with the (4, 7)-partition.

The remaining clusters of cases are those where the three justices of the conservative
core are not a part of the majority (except for Rehnquist with the PGA versus a handicapped
player). The singleton, Illegal Search 3, is a most improbable decision where Scalia and
Thomas are joined by three members of the liberal wing in a yet another 5-4 decision. The
white squares for Rehnquist and Stevens are the inconsistencies with structural equivalence.
Next comes three decisions—Legal Aid for the Poor, Detaining Criminal Aliens and Immi-
gration Jurisdiction—where Kennedy joins the liberal wing to produce more 5-4 decisions.
There are no inconsistencies with structural equivalence. Next comes five decisions where
the liberal wing is joined by both Kennedy and O’Connor.6 Rehnquist’s vote is inconsis-
tent with structural equivalence. Finally, there are three decisions where the liberal wing is
joined by O’Connor. These are the Campaign Finance, Voting Rights, and the Deporting
Criminal Aliens cases. There are no inconsistencies with structural equivalence.

Fig. 2provides a pictorial representation of the partitioned two-mode Supreme Court data
as a bipartite graph. The clusters that are produced are homogenous—there is no mixing of
the two types of social actors in them. Finally, together, the matrix display inFig. 1and the
picture of the bipartite graph inFig. 2provide clean displays of the partitioned two-mode
data.

6 As noted above, the case of the PGA versus a handicapped player has Rehnquist in the majority.
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Table 2
Sorted participation matrix

Having a partition based on structural equivalence, without really pre-specifying a model,
that is sufficient to partition the Supreme Court two-mode data set is appealing. However, in
general, using just these two types of blocks (null and complete) that could appear anywhere
in a blockmodel will not be sufficient to blockmodel all two-mode data structures. We
turn now to consider other types of blockmodels and strategies for modeling two-mode
data.

6.2. The southern women event participation data

Our second example is theDavis et al. (1941)Southern Women participating in social
events data set. They are shown inTable 2where a 1 indicates attendance at an event
and 0 indicates not attending an event. See alsoHomans (1950)for a discussion of these
data.

As Freeman (2003)notes, this data set “. . . reappears whenever any network analyst
wants to explore the utility of some new tool for analyzing data.” We join the long line of
analysts who have mined these data. Our assessment of the utility of using blockmodeling
tools for two-mode data has been made much easier byFreeman’s (2003)meta-analysis of
21 analyses of these data. His analysis provides a consensual (induced) criterion regard-
ing the ‘true structure’ in these data. It is also a point of departure for other partitioning
strategies.

Freeman is clear that the ‘true structure’ of the Southern Women data on the participa-
tion in social events is one where there are two subgroups. One is composed of{Evelyn,
Laura, Theresa, Brenda, Charlotte, Frances, Eleanor, Pearl, Ruth} and the other has{Verne,
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Fig. 3. Southern Women Bipartite Network: Version 1.

Myra, Katherine, Sylvia, Nora, Helen, Dorothy, Olivia, Flora} as its members. These two
subgroups of women are labeled as ‘Group A’ and ‘Group B’. Freeman is silent about
the corresponding partition of the set of events. We label the eventsEj for 1 ≤ j ≤
14 where the labeling of the events is consistent with the partitions of those events that
we present. We have divided them into three clusters that almost have the form: events
E1–E5 were events attended only by women of Group A; eventsE6–E9 were events at-
tended by both groups of women and eventsE10–E14 were attended only by the women
in Group B. Pearl is the exception in Group A because she attends onlyE6, E8 andE9
and Dorothy, by attending onlyE8 andE9, is the exception in Group B. This partition is
labeled ‘Version 1’ and is shown asTable 2. Consistent with that description,Fig. 3shows
a picture of the bipartite graph with these two clusters of women and the three clusters of
events.

Can the (2, 3)-partition shown inTable 2be recovered as a unique (or near unique)
solution by means of (generalized) blockmodeling tools for two-mode data? If only the
block types are specified and there are no further specifications, then the answer is no. It
becomes necessary topre-specify(Batagelj et al., 1998) the location of specific block types
and it is possible to impose different penalties on some inconsistencies relative to others.
Moving in this direction is aided by the summary of the event participation as shown in
Table 3.

Table 3makes it clear that there are events attended only by women from Group A and
a set of events attended only by women from Group B. The blockmodel suggested by the
counts inTable 3is:

com com nul
nul com com
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Table 3
Counts of participation in events

With structural equivalence in mind, the specification can be ‘strengthened’ in the sense of
pre-specifying a model in terms of block types and their location within the image. In this
case, if there are events attended only be women of Group A and events attended only by
women of Group B then there are clear null blocks. It seems sensible to use this information
about the structure of the data inTable 2. So, in addition to specifying that only null and
complete blocks are allowed, we can go further and specifywherein a blockmodel these
null blocks should belocatedand specify that inconsistencies in the form of 1’s in these
null blocks are to penalized. That is, 1’s in these null blocks are more consequential than 0’s
in the otherwise complete blocks. The penalty we imposed for 1’s in null blocks was 100
with the expectation that null blocks would be identified as null but with the consequence
of increasing the number of 0’s in blocks whose corresponding ideal block is complete.

Fitting this blockmodel type, with the penalty, does yield a unique blockmodel with
the specified form and 64 inconsistencies with the corresponding ideal blockmodel. The
partition for the women is the ‘best’ partition emerging from Freeman’s meta-analysis. The
partition of the events is problematic where the partition is{E1, E2, E4}, {E3, E5–E9}
and{E10–E14}. We note that all of the structural equivalence partitions—where only block
types were specified—has optimized criterion functions of 53.

By making sure that the null blocks were null, the ‘total’ number of inconsistencies
was raised in the form of 0’s in complete blocks. This is not surprising because seeking
partitions with additionalconstraints(in the pre-specification), in general, leads to partitions
with larger values for the criterion function. There is a price to pay if constraints are placed
on solutions. In this case, there are null blocks thatmust be preservedand preserving them
for all fitted blockmodels increases the inconsistency count from 53 to 64. It is a price we
are willing to pay and insist that it is a price we often must pay to delineate meaningful
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Table 4
Sorted participation matrix

partitions if we know moreabout the data than the presence of blocks consistent with an
equivalence type.

The partition shown inFig. 3andTable 2is appealing and reproduces the ‘truth’ identified
in Freeman’s (2003) meta-analysis of previous analyses of the Davis data. Yet there is a
problem in the pattern of ties for Pearl and Dorothy. They attend only eventscommonto
Group A and Group B. This suggests the partition shown inTable 4where Pearl and Dorothy
form their own group. This suggests a blockmodel with a pre-specified structure of:

com com nul
nul com com
nul com nul

When this pre-specified model is fitted, a unique solution is returned for the blockmodeling
problem for these data and it is exactly the partition shown inTable 4. This blockmodel is
shown inFig. 4.

The partition shown inTable 4can be reached in at least two other ways. Doreian et al.
(2005) show that both of the following specifications also produce exactly the same partitions
of women and events:

reg reg nul
nul reg reg
nul rre nul

rdo rdo nul
nul rdo rdo
nul cdo nul
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Fig. 4. Southern Women Bipartite Network: Version 2.

An examination ofTable 4makes it clear that these are both appropriate pre-specified
blockmodels for these data. For both, the same heavy penalty for 1’s in null blocks was
imposed. Of course, the measures of inconsistency change with the change in the def-
inition of block types. SeeDoreian et al. (2005)for a discussion of having multiple
blockmodel types for complementary interpretations of a body of data and a discussion
of why inconsistencies for different block types and blockmodels cannot be compared
directly.

We turn now to consider delineating the subgroup structure of Group A and Group B.
However, we do so with a certain amount of trepidation because there may not be enough
information to determine the internal structure of Group A and Group B in an unequivocal
fashion. Certainly, we do not determine this internal structure in a unique fashion. Given the
robustness of the partition of events into three clusters, we first consider (5, 3)-partitions.
We know already that Dorothy and Pearl belong to neither Group A nor Group B. As a
result, we need to specify a cluster for them. If Group A and Group B are each to be
split into two subgroups, thenk1 is 5. All our attempts to get subgroups of A and B with
predicates of complete, regular, row-regular and null blocks were not successful. Either
there are multiple equally well-fitting partitions or the unique partitions, when they are
returned, are less than satisfying. The unique partitions most often break Group A into a
singleton (usually Evelyn) and the rest of A and to break Group B into a singleton (usually
Nora) and the rest of B. It appears that the use of complete, regular and row-regular blocks
precludes the identification of reasonable subgroups. When complete blocks are used, there
is a tendency to return singletons as one of the subgroups. This suggests weakening such
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Table 5
(5, 3)-Partition for subgroups using density blocks

a specification to a regular block. The key problem is that the step away from complete
blocks to regular blocks permits a large number of candidate regular blocks of greatly
varying densities. This leads to multiple equally well-fitting partitions.

If there are subgroups of A and B, then their attendance patterns must differ if they are
to be differentiated. Core women attend more group events than the other women. This
suggests blocks of differential densities. To accommodate this notion, we pre-specify the
following ideal blockmodel where ‘den’ indicated that a density is to be specified:

den reg nul
rre reg nul
nul rre nul
nul reg den
nul rre rre

The density has to specified as high and we selected a density of 0.8 for the blocks specified
as ‘den’. Under this specification, ‘den’ indicated that there are women who attend heavily
a subset of events for their group. The remaining women of a group attend only some of
their group’s events. For these women we specify a row-regular block. For common events,
we use either regular or row-regular blocks. The third row of the blockmodel is specified
for Dorothy and Pearl. When this pre-specified blockmodel is fitted with 50,000 repetitions
and the heavy penalty (100) for null blocks, we obtained the (seemingly) unique partition
shown inTable 5.
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Table 6
A second (5, 3)-partition for subgroups using density blocks

Unfortunately for a simple narrative, a second run of 100,000 repetitions yielded the
partition shown inTable 6which means that we cannot establish a unique partition with
the above pre-specified model. The partition inTable 5is quite appealing. Evelyn, Laura
Theresa and Brenda all have heavy participation in eventsE1–E5. The remaining women
{Charlotte, Frances, Eleanor, Ruth} of Group A have a much lower participation in events
E1–E5. The partition shown inTable 6has appeal also insofar as{Evelyn, Laura, Brenda}
still have a heavy participation in eventsE1–E5. Theresa also has a heavy participation in
these events, she does not attendE1 and is located in the second cluster of women in Group
A in Table 6. This ambiguity is problematic even though the difference seems minor. If
anything the partition shown inTable 5is preferable as it provides a sharper delineation
between the two subgroups of Group A. When we turn to Group B, inTable 5, a similar
problem occurs. In the partition shown, it seems that Katherine and Nora form the core of
Group B with their heavy attendance of eventsE10–E14, the events attended by the women
of Group B only. However, a visual inspection shows that the partition with Katherine and
Sylvia interchanged also satisfies this pre-specified model and there is a lingering doubt that
Katherine ought to be located in the first subgroup of B. In short, while we have the broad
outline of the subgroup structure of the two groups of women, we do not have a unique
partition with this pre-specified blockmodel.

An alternative strategy for considering subgroups of Group A and Group B is to include
a finer grained partition of the events. As a part of this alternative, it seems reasonable to
focus on null blocks within the events for Group A and within the events for Group B. An



44 P. Doreian et al. / Social Networks 26 (2004) 29–53

Table 7
(5, 5)-Partition for subgroups using more event clusters

inspection of the data suggested the following blockmodel:

reg com reg nul nul
nul com reg nul nul
nul nul rre nul nul
nul nul reg reg com
nul nul rre reg nul

When this blockmodel is fitted over 50,000 repetitions, the blockmodel shown inTable 7
results. The partition is exact with zero inconsistencies and seems unique. EventE5 is
a singleton and all of the women of Group A attend it. For eventsE1–E4, Eleanor and
Frances are detached from the rest of Group A by attending none of these events while
the remaining members of Group A attend at least one of them. For Group B, Katherine,
Sylvia and Nora all attendE13 andE14 while the other members of Group B do not attend
them. This fitted blockmodel resolves the ambiguity concerning the subgroup structure of
Group B.

Each of the three partitions (inTables 5–7) delineates slightly different features of the
internal structure of the two larger groups of women in the Deep South data. We could rest
at this point but there is the sense that these partitions are rather ‘forced’. The pre-specified
models were obtained after a close inspection of the data and it is no surprise that the models
fit exactly. The trouble is that they are not unique and the blockmodels might be ‘over-fitted’
through looking closely at the details of the potential blocks. So, we step back and think of
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Table 8
Structural equivalence (5, 5)-partition for subgroups

one further pre-specified model:

com com com nul nul
nul com com nul nul
nul nul com nul nul
nul nul com com com
nul nul com com nul

Again, we fit it with the same heavy penalty on the null blocks. The unique partition
(over 100,000 repetitions) is shown inTable 8. There are 44 inconsistencies with structural
equivalence with the pre-specified model. Group A is split into{Evelyn, Laura, Theresa,
Brenda, Charlotte} and{Frances, Eleanor, Ruth} while Group B is split into{Katherine,
Sylvia, Nora} and{Verne, Myra, Helen, Olivia, Flora}. The partition of events inTable 8
differs slightly from the partition of events inTable 7with {E1, E2, E4} and{E3, E5}
as the partition of the first five events. The only difference in the partition of the women
in Group A between the partitions shown inTable 8andTable 7concerns the location
of Frances. The null block defined by{Frances, Eleanor, Ruth} and {E1, E2, E4} has
considerable appeal in delineating the subgroup structure of Group A. The partition of the
women of Group B is identical in the two tables. If anything, we give a slight preference to
the partition shown inTable 8because the specification of null blocks and non-null blocks
requires less ‘over-fitting’ compared to specifying a complex pattern involving complete,
regular and row-regular block types. Moreover, it appears to be a unique partition given the
pre-specified model.
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Table 9
Examples of blocks with types of connections

7. Thinking of one-mode data as if they were two-mode data

Recognizing that the row and column partitions may be different makes it possible to view
one-mode network data in a different fashionby thinking of them as two-mode data. People
in an organization can seek advice from each other and form advice networks. Because
seeking advice and providing advice are directional activities, the advice networks that
they generate will be asymmetric.7 This suggests that partitioning the rows and columns in
different ways will be useful. For social service agencies that refer clients, the act of referral
is asymmetric. As a result, these inter-agency one-mode networks can be examined fruitfully
as if they were two-mode networks. A final example comes in the form of journal-to-journal
networks for academic disciplines. Blockmodeling has been used to partition such networks
as one-mode networks in terms of structural equivalence. While the partitions had value,
there is a sense in which a partitioning strategy for one-mode data is overly restrictive.
If there are ‘consumer’ journals (as the first set of actors) and ‘producer’ journals (as the
second set of actors), it makes sense to think of partitioning the rows and columns of such
citation networks in different ways.

The following discussion requires the use of some of the expanded set of block types
presented byDoreian et al. (1994, 2005).Table 9shows these block types and, from them, we

7 If some pairs of actors seek and provide advice to each other, then the advice network will be non-symmetric.
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concentrate on expanding the set of null, complete, and regular blocks with the row-regular,
column-regular and row-function blocks. SeeDoreian et al. (1994, 2005)for a pictorial
representation of these block types.

7.1. Journal-to-journal citation networks

Journal networks are defined with journals as the vertices and have valued elements.
These elements are counts of the number of times articles on one journal cite articles in
another journal. The diagonal elements of these (one-mode) journal networks are counts
of self-citation for the journals in the network. These (valued) networks have been studied
as one-mode networks and partitioned in terms of structural equivalence (Doreian, 1985,
1988). In these partitioning efforts, the rows and columns are clustered in thesameway
and the diagonal elements are ignored. Such networks have also been studied as one-mode
core–periphery structures (Borgatti and Everett, 1999). At face value, these one-mode net-
works arebetter viewedas two-mode networks. When this is done, journals are seen as
both ‘consuming journals’ (in the rows asciting journals) and ‘producing journals’ (in the
columns ascited journals). And, consistent with the approach taken in this paper, the rows
and columns can be clustered indifferentways. Additionally, the self-citation entries (di-
agonal elements) can be included as an integral part of the data even though the ‘diagonal’
elements of theimagehave no meaning.

Viewing citation networks in this fashion allows us to examine the different roles that
journals can perform as producers and consumers of knowledge. This can be approached
as a simple form of ‘hypothesis testing’. If there is no difference between these roles,
then the rows and columns, as an empirical matter, will be clustered in the same way. To
the extent that rows and columns are clustered differently, we have evidence that jour-
nals function differently with regard to the production and consumption of disciplinary
knowledge.

In approaching journal networks in this way, we had only some intuitions at the outset. We
thought that there would be a core consumer position and a core producer position, consistent
with the idea of distinguishing cores from non-cores. Further, to reflect ‘coreness’, the block
corresponding to the two (producer and consumer) cores should becomplete. Everycore
consumer journal ought to citeeverycore producer journal andeverycore producer journal
ought to be cited byeverycore consumer journal. Second, there will be non-core consumers
and non-core producers. Some will vary in the extent to which they approximate a core and
others will not be core journals. We speculate that a second level of consumer journals
will occupy a position where the block defined by them and the core producer journals is
weaker than a complete block. We specify that the (1, 2) block is regular. But differently,
for such a set of near-core consumer journals, each will cite at least one core producer
journal and every core producer journal will be cited by at least one the second level of
near-core consumer journals. In a similar fashion, we think there will be a second level of
producer journals whose block with the core consumer journals would be regular—i.e. the
(2, 1) block is a regular block. Third, weaker consumer and producer positions will have
blocks, involving the core producer and core consumer journals, that would be row-regular
and column-regular. Fourth, there will be null blocks. It seems reasonable to expect ‘holes’
in the structure if journals occupy different niches. There will be sets of consumer journals
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Table 10
Journals in social work citation network

Title Label Id

Administration in Social Work ASW m
British Journal of Social Work BJSW n
Child Abuse and Neglect CAN j
Child Care Quarterly CCQ o
Child Welfare CW a
Children and Youth Services Review CYSR b
Clinical Social Work Journal CSWJ k
Family Relations FR l
Journal of Gerontological Social Work JGSW p
Journal of Social Policy JSP q
Journal of Social Work Education JSWE e
Public Welfare PW r
Social Casework SCW c
Social Services Review SSR f
Social Work SW d
Social Work with Groups SWG g
Social Work in Health Care SWHC h
Social Work Research and Abstracts SWRA i

that never cite some of the producer journals and there will sets of producer journals that are
not cited by sets of consumer journals. Finally, we need to allow for certain ‘almost null’
blocks: some ‘diagonal’ elements might cause some problems by appearing in erstwhile
null blocks. If there are consumer journals that cite some of the core journals and then only
themselves, these self-citation counts will appear in null blocks. This suggested the use of
the row-function block type to allow a single non-zero element to appear in each row of
such a null block. The specified model is:

com reg cre rre
reg reg nul nul
reg nul rfn nul
rre rre nul rfn
cre nul nul rfn

With the above arguments in mind, we re-analyze the social work journal network reported
by Baker (1992)and analyzed byBorgatti and Everett (1999). The included journals are
listed inTable 10. In addition to thinking in terms of blockmodeling these data as two-mode
data, there is one important difference between out approach and that of Borgatti and
Everett. The original data are not symmetric and, in contrast to Borgatti and Everett, we
do not symmetrize them for a simple reason. When the data are symmetrized there can
be no distinction between production of, and consumption of, knowledge. A two-mode
analysis of such a symmetrized citation network would yield the same partition of the rows
and columns. This is especially true when a symmetrized element is constructed from a
non-zero and zero citation rate for a pair of journals.
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Table 11
Journal citation matrix with the (5, 4)-partition

We leave out two of the journals included by Baker. One is the Indian Journal of Social
Work (IJS) really does not belong to the network.8 It is linked weakly with only one other
journal (Table 10). Also eliminated was Administration in Mental Health because it was
linked weakly to only one other journal. This leaves the 18 journals whose citation volumes
are shown inTable 11.

Table 11has been organized so that rows columns that have been permuted to reflect a
partitioned structure with five consumer positions and four producer positions. The producer
positions (wherePJi is used to label producer clusters) are:

PJ1 {CW, SCW, SSR, SW}
PJ2 {ASW, JSWE, SWG, SWHC, SWRA}
PJ3 {CAN, CSWJ, FR}
PJ4 {BJSW, CCQ, CYSR, JGSW, JSP, PW}

and the consumer positions (whereCJj is used to label the consumer positions) are:

CJ1 {CW, CYSR, SCW, SW}
CJ2 {JSWE, SSR, SWO, SWHC, SWRA}
CJ3 {CAN, CSWJ, FR}
CJ4 {ASW, BJSW}
CJ5 {CCQ, JGSW, JSP, PW}

8 Consulting members of a social work faculty about these data, all indicated that US, regardless of its merits,
is not visible in the US and is seldom or never consulted.
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It is clear that the consuming positions differ from the producing positions. There is a single
inconsistency between the fitted blockmodel and the corresponding ideal blockmodel. This
is the bolded element (7) in the block defined by the fifth row position and the third column
position.

Three journals (CW, SCW, SW) belong to both of the core positions—they are core
producers inPJ1 and are core consumers inCJ1. Social Service Review (SSR) is inPJ1
but notCJ1 while Children and Youth Services Review (CYSR) isCJ1 but is notCP1. SSR
does appear in the second consumer position. Four journals (JSWE, SWG, SWHC, SWRA)
are common to the second producer position (PJ2) and the second consumer position (CJ2).
Together, these most prominent journals vary in their roles as producers and consumers of
social work knowledge. We note that the block defined byCJ2 andPJ2 is regular. This is
also the case for the block defined byCJ1 andPJ2. The third producer position (PJ3) and the
third consumer position (CJ3) share the same set of journals, namely CAN, CSWJ, and FR.
The block defined byCJ3 andPC1 regular as is the block defined byCJ1 andPC3 (although
we only specified it as row-regular). The block defined byCJ3 andPJ3 is a row-functional
block. Apart from these block types, the blocks associated with these positions are null
blocks. The block defined byCP4 andCJ1 is row-regular while the block defined byCP1
andCJ5 is column-regular. Apart from these, the blocks for the last consumer and producer
positions are null or row-functional. The one inconsistency for the fitted blockmodel is the
tie from PW to CAN. The bipartite graph (for incidence of ties but not their values) is shown
in Fig. 5 where the journals in each of the producer and consumer positions are grouped
together.

There is an interesting contrast with the analysis ofBorgatti and Everett (1999)who found
a single core in a core–periphery structure. The core they established was{SSR, SCW,
SW}. These three journals are in our producer core (PJ1) but only SCW and SW are in the
consumer core (CJ1). In our analysis, the producer core includes also CW while the core
consumer includes CW and CYSR. Analyzing these data with a two-mode blockmodeling
approach provides a more differentiated view of the core.

8. Summary and discussion

While (generalized) blockmodeling has been used primarily as a powerful way of
modeling one-mode network data, we have extended (generalized) blockmodeling
to examine two-mode data. To do this, it is necessary to think in terms of parti-
tioning the rows and columnsseparatelyas a part of the overall partitioning procedure.
Two examples, the Supreme Court data and the Southern Women data, were two-mode
data sets. For the former we used structural equivalence in an unrestricted fashion and,
for the latter, we used the same equivalence idea but added to it the use of a pre-specified
blockmodel.

The partitions returned for both of these data sets are straightforward and compelling.
To the extent that the ‘true’ partition stemming from Freeman’s meta-analysis of the many
prior analyses of the Southern Women data provides a benchmark, the two-mode block-
modeling approach discussed here does delineate the true structure of the subgroup forma-
tion for these data, consistent with the analysis ofFreeman and White (1994). Additionally,
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Fig. 5. Social Work Journal Bipartite (5, 4) Network.

the corresponding partition of the events is obtained. In the same fashion, the joint
partition of justices and decisions of the Supreme Court data provides considerable
insight into the political stance of the justices and the events (decisions) that reveal their
differences.

The idea of partitioning the rows and columns in different ways is imposed by the
nature of two-mode data. There is no other way to proceed. However, the idea of parti-
tioning rows and columns in distinct ways need not be restricted to two-mode data and
can be used for one-mode data. For symmetric one-mode data structures, there is no rea-
son to use two-mode data analytic methods. However, for asymmetric and non-symmetric
one-mode networks, there is much to be gained by viewing them through the two-mode
lens. The third example, in the form of a journal-to-journal citation network, shows the
utility of treating one-mode data as though they were two-mode data. Journals differ
in terms of their producer and consumer positions and roles in the communication of
knowledge.

We offer one final caution because we have found that fitting ‘two-mode blockmodels’
is difficult. On the positive side, considerable subtleties in the partition structures can be
delineated through pre-specifying a complex pattern of block types. The potential down-
side is that a lot of ‘forcing’ or ‘over-fitting’ can occur. We attach particular importance
for obtaining unique partitions given a pre-specification even if this may create an overly
stringent criterion for accepting the adequacy of a fitted blockmodel. The liberal use of
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regular, row-regular and column-regular block types runs the risk of leading to multiple
equally well-fitting partitions. No doubt, having a larger set of block types that are attuned
to particular substantive contexts will help resolve such ambiguities in fitting two-mode
blockmodels.
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