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Abstract This work evaluates the finite sample behaviour of ML estimators in net-
work autocorrelation models, a class of auto-regressive models studying the network
effect on a variable of interest. Through an extensive simulation study, we examine
the conditions under which these estimators are normally distributed in the case of
finite samples. The ML estimators of the autocorrelation parameter have a negative
bias and a strongly asymmetric sampling distribution, especially for high values of
the network effect size and the network density. In contrast, the estimator of the
intercept is positively biased but with an asymmetric sampling distribution. Estima-
tors of the other regression parameters are unbiased, with heavy tails in presence of
non-normal errors. This occurs not only in randomly generated networks but also in
well-established network structures.

Key words: network effect model, density, network topology, non-normal distribu-
tion.

1 Introduction

Network autocorrelation models (NAMs, 3, 4, 5) deal with the presence of indi-
vidual units embedded within social structures. They represent a class of auto-
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regressive models used to study the effect of a network on an outcome variable
of interest when the data points are interdependent. Specifically, we can refer to the
“social influence” (or contagion) mechanism in which the social relations among in-
dividuals provide a foundation for predicting actor behaviors given the behaviours
of other actors in the network in which they are embedded (12).

Among the models proposed in the literature to address social influence on in-
dividual behavior, NAMs propose an approach dealing with, simultaneously, net-
work effects and individual attributes. Nevertheless despite the clear advantages
over other conventional approaches, it is known that in these models the estimated
autocorrelation parameter has a finite sample negative bias, the amount of which is
positively related with the network density (13, 14).

Our contribution aims at describing the whole finite sample distribution of the
Maximum Likelihood Estimators (MLE) of the autocorrelation and regression pa-
rameters. Through an extensive simulation study, we investigate the conditions un-
der which, MLEs are normally distributed in case of the finite samples. The finite
sample distributions are evaluated with respect to the network density and topology,
the distribution of error terms, and the strength of the autocorrelation parameter (i.e.,
the network effect size).

We focus on three research questions:

• What is the whole sampling distribution of the network effect estimator?
• What are the finite sample distributions of the regression coefficient estimators?
• What are the consequences of the errors not being normally distributed?

The remaining of the paper is organized as follows. Section 2 presents a brief
review on NAMs. The Monte Carlo simulation study used to deal with the afore-
mentioned research questions is described in Section 3. Section 4 reports the main
results, while Section 5 concludes with some final remarks.

2 A brief review of network autocorrelation models

Two types of network autocorrelation models are available within the literature (3):
the network effects model and the network disturbances model. In the first case, in-
terdependencies between actors are modelled through the inclusion of an autocorre-
lation parameter in the dependent term, while in the second case interdependencies
are included in the disturbance term. Here the focus is on the network effects model
which allows individual outcome to be directly associated with neighbours’ levels
of outcome by including the network effect as a weight matrix (11).

More formally, let y be a (n× 1) vector of values of a dependent (endogenous)
variable for n individuals making up a network, let X represent the (n× p) matrix of
values for the n individuals on p covariates (including a unit vector for the intercept
term), and let W be the (n×n) network weight matrix whose elements, wi j, measure
the influence actor j has on actor i. The network effects model is defined as:
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y = ρWy+Xβ + ε

where ρ is the network autocorrelation parameter referred as the strength of the
social influence mechanism in a network, β is a (p×1) vector of regression param-
eters, and the error terms ε are assumed to be independently normally distributed
with zero means and equal variances, ε ∼ N(0,σ2I).

This class of models represents a popular tool for conducting social network anal-
ysis. First adopted to describe social influence mechanism (12), it has been recently
applied in many social science fields (see e.g. 2, 7, 9, 15) and it has been extended
to the study of multiple networks (6, 16) and to the presence of two-mode networks
(10).

From a methodological point of view, recent contributions focused on the bias of
the MLE of the network autocorrelation parameter ρ . They discovered a systematic
negative bias, whose magnitude increases with the network density (13). In addi-
tion, it has been found that this bias does not depend on network size, numbers of
exogenous variables in the model, and whether the network weight matrix W was
normalized or reported in raw form. The bias also does not depend on the presence
of well-established network structures (e.g., scale-free and small world configura-
tions), although it is especially pronounced at extremely low-density levels in the
star network (14).

Recently, rather than look for more conditions in which network autocorrelation
parameter is underestimated, Wang et al. (17) investigated the likelihood of identi-
fying a statistically significant network effect. They show that NAM well controls
for Type I error rates, that the statistical power is a nonlinear function of ρ and of the
network size, and that network density and structured networks have little impact on
statistical power. With respect to this latter aspect, Faber et al. (8) showed that the
average degree of a random network impacts the power of tests.

However, as highlighted within the introduction, knowing the full sampling dis-
tributions of MLE estimates is needed. This is the focus of our study. Its design and
results are described in the next sections.

3 Simulation design

An extensive Monte Carlo study (5000 MC replications) was used to assess the
whole finite sampling distribution of MLEs. To accomplish this, the following con-
ditions have been varied: i) the network density (∆ ), ii) the network autocorrelation
parameter (ρ), iii) the network topology (W), and iv) the error distributions (ε).

Two covariates were considered, and data were generated according to the fol-
lowing network autocorrelation model:

yi = ρWyi +β0 +β1x1i +β2x2i + εi, i = 1,2 . . . ,n.
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Corresponding to the simulation design used by (13, 14), the elements in the sim-
ulation scheme were set as follows. Covariates were randomly generated according
to a standard normal distribution; without loss of generality, all the β ’s were set
equal to the same constant value (β0 = β1 = β2 = 2); only positive values of ρ were
considered (0.00 ≤ ρ ≤ 0.90), accounting for low to high network effect size. The
error were independently randomly generated with constant variance (Var[εi] = 1)
according to three different schemes. First, as is done usually in such studies, er-
rors were standard normally generated. Second, to consider the effect of asymmet-
ric errors, a standard log-normal was considered. Finally, to consider a completely
non-standard distribution, the error term was derived by generating data from an
equal weight mixture of distributions of a (centered) chi-square with one degree of
freedom and a Student’s t with 4 degrees of freedom.

We consider a sample size of 50 nodes. The network weight matrix W was row
normalized, randomly generated at each run. The network density ∆ took values
0.05 ≤ ∆ ≤ 0.80. Beyond the Erdos-Renyi random graphs (E-Rs) adopted as base-
line model, two other kinds of topologies were considered to assess the evidence of
non-random behaviours in the formation of network ties. Specifically, the scale-free
(1) and the small world (18) network configurations where taken into account so
that the effect of well-established network structure can be evaluated, as reported in
(14). In the first case, preferential attachment defines the tie formation mechanism.
This mechanism accounts for the tendency to be linked with the best connected
nodes (i.e., nodes with the highest degree). Hence a scale-free structure emerges
when nodes degree distribution follows a power law distribution, and a “star” net-
work structure appears (i.e. one node is linked to all the others and no other con-
nections are present among the remaining nodes). The small-world configuration
presents instead a high node connectivity with low average distance among regions
of the network. More specifically, the concurrent presence of dense local clustering
(measured by clustering coefficient) with short network distances (measured by the
average path length) is observed.

4 Results

We examine the observed sampling distributions of (r-ρ), (b0-β0), (bk-βk), where
r, b0 and bk are the ML estimators of ρ , β0, and βk, respectively, (k= 1,2). First,
somewhat to our surprise, all three of the examined network structures provided
substantially the same results. One implication is that the operation of network ef-
fects in NAMs do not rest on the global structure of the network. For this reason,
only results for the E-R random graph are discussed further.

A series of parallel boxplots are reported in each picture illustrating the ML finite
distribution for different levels of network effects size, densities, and error distribu-
tions.

The sampling distributions obtained for (r-ρ) are shown in Figure 1. Each frame
in the figure corresponds to simulation results obtained for a fixed value of the pop-
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ulation parameter ρ (ρ= 0, 0.1, 0.2,. . . , 0.9). Boxplots show results with respect to
five level of density (horizontal axes, ∆= 0.05,. . . , 0.8), and three error distributions
(normal, lognormal, mixture, in this order).

As expected, sampling distributions are negatively biased, a result increasing
with ρ and ∆ . Normality does not seem to hold: for low values of ρ and ∆ , heavy
tails appear. For higher values of both parameters, distributions are quite strongly
asymmetric. Finally, it seems that differences in the error distributions have a minor
effect on the resulting estimator distributions.

Fig. 1 Boxplots of the sampling distribution r-ρ (vertical axis) for E-R random graphs. The density
values are reported on the horizontal axis. Results are reported for different values of ρ .

Adopting the same graphical structure, results obtained for the sampling dis-
tributions of the regression coefficient estimators are reported in Figures 2 and 3
[for (b0 −β0) and (b1 −β1), respectively]. Results for the sampling distributions of
(b2 −β2) are not reported as they are the same to those observed for (b1 −β1).

As for the regression coefficient estimators, some different behaviours arise. The
intercept estimator distributions mirrors the distribution of the autocorrelation pa-
rameter estimator: it is positively biased, with such a bias increasing with ρ and ∆ ,
with analogous effects in terms of asymmetries and heavy tails. On the other hand,
results suggest that the estimators of the other regression coefficients are unbiased,
with heavy tails in the presence of non-normal errors.

Overall, it seems that where non-normality of the estimator distributions arises
as a consequence of a certain degree of autocorrelation and density, this effect over-
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whelms the effect due to non-normality of the errors. However, where distributions
are unbiased and normal, non-normality of the errors plays a more substantial role.
To conclude, ML estimators of the autocorrelation parameter and of the intercept
are not normally distributed in case of small sample size, even in presence of nor-
mally distributed errors. Furthermore, the network density has some effect on the
variability of the estimators. On the other hand, it seems that other features of the
network topologies, in the main, have little effects.

Fig. 2 Boxplots of the sampling distribution of b0 −β0 (vertical axis) for E-R random graphs. The
density values are reported on the horizontal axis. Results are reported for different values of ρ .

5 Discussion and conclusions

The present contribution has shown that the ML estimator of ρ in NAMs not only
contains a systematic negative bias, as expected, but also that its distribution is typ-
ically non-normal and asymmetric.

According to our results, for high values of the autocorrelation parameter ρ and
network density ∆ , the sampling distribution of the autocorrelation parameter is
negatively biased and quite strongly asymmetric. On the other hand, the sampling
distribution of regression coefficients is positively biased and asymmetric for the
estimator of the intercept, and unbiased and with heavy tails in presence of non-



Finite sample behaviour of MLE in network autocorrelation models 7

Fig. 3 Boxplots of the sampling distribution of b1 −β1 (vertical axis) for E-R random graphs. The
density values are reported on the horizontal axis. Results are reported for different values of ρ .

normal errors for the other regression coefficients. This occurs not only in randomly
generated networks but in well-established network structures as well.

Furthermore, the non-normality and the asymmetry is not confined strictly to
networks with high density. At least in small world networks, these features exist
also for very low levels of density. This suggests will be worthwhile to extend this
analysis in order to study the performances of other related estimation tools, such as
the finite sample confidence intervals built on the corresponding asymptotic theory.
The authors intend to report on that issue elsewhere.
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