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Abstract

Understanding social phenomena with the help of mathematical models re-
quires a coherent combination of theory, models, and data together with us-
ing valid data analytic methods. The study of social networks through the
use of mathematical models is no exception. The intuitions of structural bal-
ance were formalized and led to a pair of remarkable theorems giving the
nature of partition structures for balanced signed networks. Algorithms
for partitioning signed networks, informed by these formal results, were de-
veloped and applied empirically. More recently, ‘‘structural balance’’ was gen-
eralized to ‘‘relaxed structural balance,’’ and a modified partitioning
algorithm was proposed. Given the critical interplay of theory, models,
and data, it is important that methods for the partitioning of signed
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networks in terms of relaxed structural balance model are appropriate. The
authors consider two algorithms for establishing partitions of signed net-
works in terms of relaxed structural balance. One is an older heuristic re-
location algorithm, and the other is a new exact solution procedure. The
former can be used both inductively and deductively. When used deductive-
ly, this requires some prespecification incorporating substantive insights.
The new branch-and-bound algorithm is used inductively and requires no
prespecification of an image matrix in terms of ideal blocks. Both proce-
dures are demonstrated using several examples from the literature, and
their contributions are discussed. Together, the two algorithms provide
a sound foundation for partitioning signed networks and yield optimal par-
titions. Issues of network size and density are considered in terms of their
consequences for algorithm performance.
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Leik and Meeker (1975) describe a ‘‘theory-model-data triangle’’ in their char-

acterization of mathematical sociology. The items in this triangle are joined

through both deductive and inductive links. Theoretical ideas, model formula-

tion, and data analyses are intertwined to promote understanding of social

phenomena. One important implication is that these three items need to be

coherently related so that each informs and extends the others. Failure in

any one area, be it theory, models, or data analytic methods, severely limits

the credibility of empirical results. With social scientists paying greater atten-

tion to social network approaches, it is critical that theory, models, and data

remain consistent when studying network phenomena. As an example, the im-

portant conceptualization of structural equivalence by Lorrain and White

(1971) inspired major changes in how social networks were viewed and ana-

lyzed. Breiger, Boorman, and Arabie (1975) provided a practical blockmod-

eling method for clustering network data with an algorithm they called

CONCOR for operationalizing and implementing structural equivalence.

Burt (1976) proposed STRUCTURE as an alternative algorithm for delineat-

ing network structure using a different operationalization of structural equiva-

lence. White and Reitz (1983), by building on the insights of Sailer (1978),

formulated regular equivalence as a generalization of structural equivalence.

Both types of equivalence and algorithms are part of the widely used package

UCINET (Borgatti, Everett, and Freeman 2002). All of these ideas were
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incorporated by Doreian, Batagelj, and Ferligoj (2005) into generalized block-

modeling as a general way of blockmodeling network structures in ways going

well beyond using structural and regular equivalence. Their ideas have been

fully implemented in Pajek1 (Batagelj and Mrvar 1998). Yet, there is no con-

sensus regarding blockmodeling, and different analysts can (and do) use these

different algorithms for blockmodeling networks to establish different parti-

tions of a specific network. In terms of Leik and Meeker’s conceptual triangle,

there has been a proliferation of methods in the data component that have not

been tied fully into the theory and model components.

We look at one part of the blockmodeling literature devoted to analyzing

signed networks and examine two seemingly different algorithms for parti-

tioning signed social networks that turn out to provide consistent partitions

and fully complement each other. Together, they ensure greater coherence

for joining the theory, model, and method components in Leik and Meeker’s

triangle. Equally important, they provide greater confidence in established

partitions of signed social networks.

Partitioning Signed Social Networks

Some social relations, for example like/dislike, esteem/disesteem, support/

oppose, friend/enemy, have signs as an intrinsic feature. Much of the study,

both empirical and conceptual, of these relations and the networks they form

has been informed by the formalization of Heider’s (1946) theory by Harary

(1953) and Cartwright and Harary (1956). The formalization of Heider’s

insights concerning ‘‘structural balance’’ as a psychological process resulted

in a remarkable theorem about the overall structure of a signed network that

is consistent with structural balance. In formal terms, we define a network,

(G, s, m), as an ordered triple where

(i) G ¼ (V, A) is a valued digraph having V ¼ {v1, v2, . . . , vm} as

a set of m vertices2 (units) and A as set of arcs with A ∈ V × V;

(ii) s: A ! {p, n} is a sign function so that the arcs with sign p are

positive and the arcs with sign n are negative3; and

(ii) m: A ! R
+ maps the arcs to the positive real numbers where the

values represent the strength of the ties represented by the

elements of A. If a signed network is binary (where the arcs are

either +1 or –1), this third definitional component is not needed.

Let aij denote an arc from vi to vj. A semiwalk of a signed directed network

is an alternating sequence of vertices and arcs: {v1, (a12 or a21), v2, (a23 or

a32), v3, . . . vn–1, (am–1m or amm–1), vm} where vertices and arcs can be
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repeated. The sign of a semiwalk is the product of the signs of the arcs it

contains. A semiwalk of a signed directed network is positive if and only

if it contains an even number of negative arcs and is negative if and only

if it has an odd number of negative arcs. A signed network (G, s, m) is de-

fined as balanced if every closed semiwalk is positive. Cartwright and Harary

(1956) proved that for a balanced signed network, (G, s, m), the set of ver-

tices, V, can be partitioned into two subsets (clusters) so that every positive

arc joins units of the same subset and every negative arc joins units of differ-

ent subsets.4 By defining a signed network as ‘‘clusterable’’ when it contains

no semiwalk with exactly one negative arc, Davis (1967) extended Cart-

wright and Harary’s result by proving that for a clusterable signed network,

(G, s, m), the set of vertices, V, can be partitioned into two or more subsets

(clusters) so that every positive arc joins units of the same subset and every

negative arc joins units of different subsets. Davis coined the term plus-sets

for sets of actors having only positive ties among themselves and only neg-

ative ties to outsiders.

The number of clusters in these partitions is denoted by K. For K ¼ 2, we

have the first of these ‘‘structure theorems’’ and K ≥ 2 for the second. In

general, we refer to the K balance of a signed network and consider a signed

network to be K balanced if it has a partition structure consistent with either

of these theorems. However, K > 2 is most relevant for empirical signed

networks. When the vertices are partitioned into K clusters, called positions

in the blockmodeling literature, the set of vertices is partitioned into K2

blocks, which form a K × K image matrix. A block is positive if it contains

positive arcs but no negative arcs and negative if it contains negative arcs but

no positive arcs. Both block types can contain zeros.

When examining signed networks, there have been two primary concerns:

(1) measuring the amount of imbalance in the network (as departures from

the ideal structure described by the structure theorems) and (2) describing

the partition structure (or structures) that is closest to the ideal forms implied

by the structure theorems. Doreian and Mrvar (1996) suggested using a line

index proposed by Harary, Norman, and Cartwright (1965) as a measure of

imbalance and proposed a partitioning algorithm based on the structure theo-

rems that minimize this measure. This heuristic algorithm is described in the

next section. Their approach was incorporated into the generalized block-

modeling approach of Doreian et al. (2005). One idea in generalized block-

modeling is translating a type of equivalence into a set of permitted block

types in a blockmodel. The partition structure of a K-balanced network

implies an obvious blockmodel structure: positive blocks on the main diag-

onal of the image matrix and negative blocks off the main diagonal.5
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Structural balance need not be the only operative process in shaping a net-

work. Some actors may be regarded positively by many other actors who oth-

erwise divide into mutually hostile subgroups. This differential popularity

(Feld and Elmore 1982) cannot be accommodated within structural balance

partitioning because it implies positive blocks off the main diagonal. Further,

given a division of a network when there are clusters whose ties are mostly

consistent with the balance hypotheses, other actors might adopt a mediating

role for these mutually hostile subgroups. If present in a network, this also

would imply positive blocks off the main diagonal. Finally, there can be

subsets of actors who are mutually hostile, and if present, this would imply

negative blocks on the diagonal of a blockmodel of a signed network. Doreian

and Mrvar (2009) proposed a relaxed structural balance blockmodel where

there are both positive and negative blocks, as is the case for balance, but

allowed these blocks to appear anywhere in the blockmodel. They adapted

their 1996 algorithm to accommodate this specification change. When applied

to some extant signed networks, the refitted blockmodels provided a more nu-

anced interpretation of the structures delineated and generally had much better

overall fits with the empirical data than for structural balance.

Doreian and Mrvar’s (2009) generalization of structural balance theory

led to a version of the theory that was labeled ‘‘relaxed structural balance.’’

It is a formal generalization of the former. Relative to structural balance, this

is a change in the formal model underlying the theory–model–data triad. The

formal generalization was motivated by a need to incorporate additional

types of social psychological processes driving the change of signed network

ties. Both structural balance and relaxed structural balance assume that the

operation of social psychological processes leave distinctive traces in the ob-

served sociometric structure that change over time. Any ‘‘tendency toward

balance’’ under structural balance posits movement to a blockmodel struc-

ture with positive blocks on the main diagonal of the image matrix and neg-

ative blocks off the main diagonal. Correspondingly, any tendency toward

balance under relaxed structural balance will result in a more complex set

of potential image matrices. As such, it is a parallel change in the theory

part of the theory–model–data triad. As a result, it is not surprising that

this implies also a change in the data part of the theory–model–data triangle.

The number of valid ideal-type blockmodel image structures was expanded,

and it is important that methods used to identify sociometric structure are

able to delineate, and discriminate between, these images. Any algorithms

for fitting these new blockmodels have to be constructed to preserve the con-

sistency of the theory–model–data triad. Given that the inconsistencies (in

the location of ties) with either version of structural balance can occur
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anywhere in a data structure and depend also on the details of the identified

block structure, the identification of optimal signed blockmodels is not a trivial

problem. The revised relocation algorithm is described in the next section,

while the new repetitive branch-and-bound algorithm is described in the sec-

tion following our description of the revised relocation algorithm. Both algo-

rithms perform as intended in the sense of complementing each other fully and

delineating the identical optimal partitions of a signed network. However,

there are subtle differences affecting the performance of these algorithms in

terms of computational time that depend on differences in the network data

structures.

A Relocation Algorithm

If a network cannot be partitioned exactly according to the structure theo-

rems, then there will be some positive ties between plus-sets and/or negative

ties within plus-sets. LetN denote the sum of negative ties in otherwise pos-

itive blocks and P the sum of positive ties in negative blocks (ties between

plus-sets6). A simple measure of the departure of some partition from the

nearest ideal structure is (N + P). Letting C denote a clustering of the verti-

ces and P(C) an overall measure of departure from K balance, called a crite-

rion function, then a slightly more general measure, where 0 ≤ a ≤ 1 is

PðCÞ ¼ aN þ ð1� aÞP: ð1Þ

If a ¼ 0.5, then the two types of inconsistencies are weighed the same re-

gardless of their type. For (0 ≤ a < 0.5), positive inconsistencies are more

important, and when (0.5 < a ≤ 1), the negative inconsistencies are consid-

ered as more important.

Seeking a partition of the vertices into plus-sets (and a partition of the arcs

into blocks) is then set up as a clustering problem: Determine a clustering C�
such that P(C�) ¼ min P(C), over all feasible clusterings of V. By definition,

P(C) ≥ 0 and equals 0 if and only if N and P are both zero. A relocation

method is then employed:

1. Select a value of K.

2. Randomly determine an initial clustering, C, with K clusters.

3. Repeat: If, in the neighborhood of the current clustering C, there

exists a clustering C0 such that P(C0) < P(C), then move to C0. The

neighborhood of a clustering C is determined by two transformations:

(a) moving a vertex from one cluster to another cluster and (b)
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interchanging two units between different clusters. This process is re-

peated many times (in the order of many 1,000s) to minimize the risk

of reaching only a local minimum rather than a global minimum.

4. Repeat the whole procedure for different values of K.

For structural balance, determining K is made easier by the following

bounds: (a) if K ¼ 1, then all negative ties are inconsistent with a balanced

partition, and (b) if K ¼ m, all positive ties are inconsistent with perfect bal-

ance. Between these extremes, the number of inconsistencies in terms of K

has a distinctive pattern for structural balance. For K, (1 ≤ K ≤ m), parti-

tions with K and K + 1 plus-sets are said to be adjacent. Doreian et al. (2005)

established a useful result for binary networks. For any signed network, (G,

s), there will be a unique lowest value, denoted by P(C min), of the criterion

function that occurs for partitions with a single number, K, of plus-sets or for

adjacent partitions.7 This implies that while a unique minimized value of the

criterion function can be obtained by searching partitions in terms of K, it is

not necessary to examine partitions for every value of K. This does not imply

that there is a unique partition with the minimized value of P(C min). Doreian

and Mrvar (2009) prove that this ‘‘nice’’ property, unfortunately, does not

hold for relaxed structural balance and that the criterion function, P(C),
declines monotonically8 with the number of clusters, K.

Despite the evident utility of the relocation algorithm for partitioning

signed networks, some problems merit further attention. These include the

following:

1. The algorithm, despite the use of many repetitions, does not guaran-

tee that a global minimum will be reached. Indeed, a persistent re-

sponse to the use of a local optimization procedure is something

like ‘‘Yes, but you do not know if you have found a globally optimal

solution.’’ For small networks (m ≤ 12), exhaustive searches are

possible and confirm the solutions obtained with the heuristic relo-

cation algorithm. So, the absence of a guarantee is not a serious

problem with very small networks. But for larger signed networks,

this remains a problem.

2. Some signed networks have multiple equally well fitting partitions

for a given number of plus-sets, which can make it impossible to se-

lect any of them on the basis of the criterion function alone. (If such

partitions differ only with regard to the location of a single vertex9

and the signed blockmodels have the same block structure, then this

is not a serious problem.) Of course, this problem is really not a prob-

lem with the algorithm per se and has more to do with the structure
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of a given network. Nevertheless, it has an important implication

that leads to a third problem.

3. Given the lack of guarantee (Item 1, above), it is possible that after

using the relocation algorithm we do not have all of the equally well

fitting partitions. As a working rule of thumb, it seems preferable to

discard all of the partitions for a given value of K if there are many

of them. If many equally good partitions are identified, then

discarding them all is not a problem for subsequent interpretations

of the network. However, if the relocation algorithm, even after

many repetitions, identifies one optimal partition for a network,

Item 1 coupled with Item 2 implies that there may be others. If so,

the apparent identification of a unique optimal partition is spurious.

It would be good if a guarantee could be provided both for identify-

ing optimal blockmodel structures and for ensuring that apparent

unique partitions are unique. We show that a branch-and-bound al-

gorithm provides one.

A Repetitive Branch-and-Bound Algorithm

We present an exact algorithm for finding a K cluster partition of vertices that

maximizes concordance with relaxed structural balance. This algorithm

builds on a long history of branch-and-bound procedures for clustering prob-

lems (Brusco 2003, 2006; Diehr 1985; Klein and Aronson 1991; Koontz,

Narendra, and Fukunaga 1975). Brusco and Steinley (forthcoming) recently

devised a branch-and-bound method for generalized structural balance parti-

tioning; however, the adaptation of their procedure is not straightforward be-

cause of differences in the assumptions regarding ideal block structure. More

specifically, for structural balance, as stated earlier, the ideal block structure

is known: All main diagonal blocks are positive, and all off-diagonal blocks

are negative. However, for relaxed structural balance, the placement of pos-

itive and negative blocks is unknown. Therefore, the branch-and-bound

procedure for relaxed structural balance partitioning must enable the deter-

mination of the ideal block structure as part of the clustering process. This

is a formidable challenge because it is difficult to preserve good bounds dur-

ing the solution process. To address this challenge, we employ a ‘‘repetitive’’

branch-and-bound algorithm similar in design to those developed by Brusco

(2003, 2006). The repetitive branch-and-bound algorithm obtains optimal

partitions for submatrices of the network matrix to establish strong bounds

for the full network matrix. Although this appears to be unnecessarily time
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consuming at face value, the improved bounds actually lead to a more rapid

solution of larger and more difficult test problems.

Notation and Mathematical Model

V: a set of m vertices corresponding to subjects, actors, etc., V ¼ {v1,

v2, . . . , vm};

C: the set of indices corresponding to the vertices inV, C ¼ {1, 2, . . . , m};

A: an m × m matrix of arc (or edge) weights for a signed digraph

corresponding to ties among the set of m vertices;

K: the number of clusters;

�(k, l): the sum of positive elements in the block defined by clusters k

and l, for 1 ≤ k ≤ K and 1 ≤ l ≤ K;

�(k, l): the sum of negative elements in the block defined by clusters k

and l, for 1 ≤ k ≤ K and 1 ≤ l ≤ K; and

T: a K × K image matrix that characterizes the block structure of the

relaxed structural balance solution, where tkl ¼ 1 for positive blocks

and tkl ¼ –1 for negative blocks for 1 ≤ k ≤ K and 1 ≤ l ≤ K.

Using these definitions, the optimization problem associated with relaxed

structural balance partitioning can be described as follows:

Maximize : Z ¼
XK

k¼1

XK

l¼1

maxf�ðk; lÞ;�ðk; lÞg; ð2Þ

subject to

�ðk; lÞ ¼
X
i∈Ck

X
j∈Cl

ðaij : aij > 0Þ 8 1≤ k; l≤K; ð3Þ

�ðk; lÞ ¼
X
i∈Ck

X
j∈Cl

ð�aij : aij < 0Þ 8 1≤ k; l ≤K; ð4Þ

C ¼ C1 ∪ :::∪CK ; ð5Þ

jCk j≥ 1 8 1≤ k ≤K; ð6Þ

Ck ∩Cl ¼ B 8 1≤ k < l ≤K: ð7Þ
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The objective function value, Z, of the optimization problem represents

the total concordance with relaxed structural balance. For each block, if

�(k, l) ≥ �(k, l), then the block is deemed ‘‘positive’’ and �(k, l) is captured

in the objective function while �(k, l) is lost because this is the absolute value

of the sum of negative elements in the positive block. Similarly, if �(k, l) <

�(k, l), then the block is deemed ‘‘negative’’ and �(k, l) is captured in the

objective function while �(k, l) is lost because this is the sum of positive

elements in the negative block. An upper bound on the objective function,

achieved if all positive elements in A occur in positive blocks and all nega-

tive elements in A occur in negative blocks, is

ZUB ¼
Xn

i¼1

Xn

j¼1

aij

�� ��: ð8Þ

An alternative statement for achieving the upper bound is that ZUB is realized

if either �(k, l) or �(k, l), or both, are zero for all 1 ≤ k ≤ K and 1 ≤ l ≤ K.

The image matrix, T, is recovered from the optimal solution to the opti-

mization problem, which is denoted asfC�1 ; :::;C�Kg. Defining ��(k, l) and

��(k, l) as the positive and negative sums, respectively, for the block formed

by optimal clusters k and l, the image matrix is obtained as follows:

tkl ¼
1; if ��ðk; lÞ≥��ðk; lÞ
�1; otherwise

�
8 1≤ k; l≤K: ð9Þ

Implicit Enumeration and the Steps of the Branch-and-Bound
Algorithm

The number of partitions of m vertices into K clusters is a Stirling number of

the second kind and can be computed by using the following equation (Hand

1981):

p ¼ 1

K!

XK

k¼0

ð�1Þk K

k

� �
ðK � kÞm: ð10Þ

As noted by Brusco and Stahl (2005: chap. 2), complete enumeration of all

feasible partitions is computationally feasible for only modest values of m

and K. For example, there are more than 4 trillion ways to partition m ¼
20 vertices into K ¼ 6 clusters, thus precluding exhaustive enumeration in

a reasonable amount of microcomputer computation time.
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Although branch-and-bound algorithms can require exhaustive enumeration

in worst-case scenarios, they are often able to substantially reduce computation

time by implicitly eliminating a large number of solutions from the search pro-

cess. Our branch-and-bound algorithm uses a forward-search procedure that

branches by assigning vertices to clusters. A complete solution in the search

process corresponds to an assignment of all vertices to clusters, whereas a par-

tial solution is characterized by an assignment of fewer than the total number of

vertices to clusters. Through the establishment of bounds, we are often able to

determine that a partial solution cannot possibly lead to a solution that is better

than the current incumbent solution. In such instances, the partial solution is

pruned and no further branches will stem from that solution. Effectively, all

complete partitions that could have stemmed from the partial solution are im-

plicitly eliminated by the pruning operation. When these pruning operations oc-

cur after assignment of only a few of the vertices, the computational savings is

enormous. Each time the branch-and-bound algorithm yields a complete solu-

tion during the search process, that solution becomes the new incumbent solu-

tion. On termination of the algorithm, all partitions have been either explicitly

or implicitly evaluated and the incumbent solution is a global optimum.

To preserve good bounds during the solution process, we use a repetitive ap-

proach (Brusco 2003, 2006). We begin by first applying the branch-and-bound

procedure to the submatrix associated with the rows and columns of the last

K + 1 vertices of the network matrix. Subsequently, optimal solutions are

obtained for the last K + 2, K + 3, and so forth, vertices of the network matrix,

culminating in the solution for the full m × m matrix. Thus, an optimal K-cluster

partition is obtained for all submatrices on the interval K + 1 ≤ m0 ≤ m. The

solution for each submatrix is used in the bounding process of larger submatrices

as necessary. For example, consider a network matrix of size m ¼ 30 with K ¼
5. Assume that the optimal partitions for submatrices of size 6 ≤ m0 ≤ 29 have

been obtained, and we are currently working on the solution for the full 30 × 30

matrix. Suppose that we have assigned the first j ¼ 5 vertices to clusters and,

therefore, know the precise objective function contribution of these 5 vertices

among themselves. This is one component of the bound for this partial solution.

Because we have already solved the 25 × 25 submatrix for the last 25 vertices in

the network matrix, we also know the best possible contribution to the bound that

could be realized among the last 25 vertices, and this is the second component of

the bound. The third component of the bound is the best possible contribution to

the objective function that could be realized between the first 5 (assigned) and last

25 (unassigned) vertices of the network matrix.

A visual description of the branch-and-bound process is displayed in

Figure 1, and terminology consistent with that of Klein and Aronson
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(1991) is used to highlight the steps. Again, it is important to recognize that

the algorithm in Figure 1 is repeated m – K times, each time increasing the

submatrix size by one, and the final repetition obtains the solution for

the full network matrix. For ease of interpretation, we describe the steps of

the algorithm within the context of the final repetition.

Step 0. INITIALIZE. Select the number of clusters, K, and use 20

restarts of the relocation algorithm to establish an initial lower

INITIALIZE

BRANCH
FORWARD

FEASIBLE
PARTITION?

BOUND
TEST?

COMPLETE
SOLUTION?

UPDATE
INCUMBENT

RETRACT

k = K, or
⎪Ck⎪ = 1?

BRANCH
RIGHT

STOP

No

Yes

Pass

Fail

Yes

No

No

Yes

YesNo

j = 0? 

Figure 1. A flowchart of the steps of the branch-and-bound process
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bound, ZLB, on the objective function. Set j ¼ 0, Z ¼ 0, Z0 ¼ 0,

l ¼ K, Ck ¼ B for 1 ≤ k ≤ K, �(k, l) ¼ 0 for 1 ≤ k, l ≤ K,

and �(k, l) ¼ 0 for 1 ≤ k, l ≤ K.

Step 1. BRANCH FORWARD. Set j ¼ j + 1, k ¼ 1, and Ck ¼ Ck ∪
{j}. If |Ck| ¼ 1, then set l ¼ l – 1. Next, perform the following

substeps:

Step 1a. Set �ðk; lÞ ¼ �ðk; lÞ þmaxfaji; 0g; 8 1 ≤ l 6¼ k ≤ K and i

∈ Cl,

Step 1b. Set �ðl; kÞ ¼ �ðl; kÞ þmaxfaij; 0g, 8 1 ≤ l 6¼ k ≤ K and i

∈ Cl,

Step 1c. Set �ðk; lÞ ¼ �ðk; lÞ þ minfaji; 0g
�� ��; 8 1 ≤ l 6¼ k ≤ K and

i ∈ Cl,

Step 1d. Set �ðl; kÞ ¼ �ðl; kÞ þ minfaij; 0g
�� ��, 8 1 ≤ l 6¼ k ≤ K and

i ∈ Cl.

Step 2. FEASIBLE PARTITION? If m – j < l, then go to Step 6.

Step 3. BOUND TEST. Perform the following substeps:

Step 3a. Set Z ¼
PK

k0¼1

PK
l¼1

maxf�ðk0; lÞ;�ðk0; lÞg as the direct contri-

bution to the objective function from the assigned vertices.

Step 3b. Retrieve Z�(m – j) as the optimal objective function value

for the yet unassigned m – j vertices. This value, which was

obtained from an earlier repetition of the branch-and-bound algo-

rithm, provides an upper bound on the best possible objective val-

ue contribution that could be realized from among the unassigned

vertices.

Step 3c. Compute Z0 as an upper bound on the contribution that can

occur between the j assigned vertices and the m – j unassigned

vertices. This bound is computed as follows:

�1ði; kÞ ¼
Xj

h¼1

ðmax ahi; 0f g h∈CkÞj ; for jþ 1≤ i≤m;

�2ði; kÞ ¼
Xj

h¼1

ðmax aih; 0f g h∈CkÞj ; for jþ 1≤ i≤m;

y1ði; kÞ ¼
Xj

h¼1

ðmax �ahi; 0f g h∈CkÞj ; for jþ 1≤ i≤m;
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y2ði; kÞ ¼
Xj

h¼1

ðmax �aih; 0f g h∈CkÞj ; for jþ 1≤ i≤m;

Z 0 ¼
Xe

i¼jþ1

XK

k0¼1

maxf�1ði; k0Þ; y1ði; k0Þg þmaxf�2ði; k 0Þ; y2ði; k 0Þgð Þ:

Step 3d. If (Z + Z�(m – j) + Z0 ) ≤ ZLB, then go to Step 6.

Step 4. COMPLETE SOLUTION? If j < m, then go to Step 1.

Step 5. UPDATE INCUMBENT. Set ZLB ¼ Z and C�l ¼ Cl for 1 ≤ l

≤ K.

Step 6. ALLOCATION. If k ¼ K or |Ck| ¼ 1, then go to Step 8; other-

wise proceed to Step 7.

Step 7. BRANCH RIGHT. Perform the following substeps:

Step 7a. Set �ðk; lÞ ¼ �ðk; lÞ �maxfaji; 0g; 8 1 ≤ l 6¼ k ≤ K and i

∈ Cl,

Step 7b. Set �ðl; kÞ ¼ �ðl; kÞ �maxfaij; 0g, 8 1 ≤ l 6¼ k ≤ K and i

∈ Cl,

Step 7c. Set �ðk; lÞ ¼ �ðk; lÞ � minfaji; 0g
�� ��; 8 1 ≤ l 6¼ k ≤ K and

i ∈ Cl,

Step 7d. Set �ðl; kÞ ¼ �ðl; kÞ � minfaij; 0g
�� ��, 8 1 ≤ l 6¼ k ≤ K and

i ∈ Cl,

Step 7e. Set Ck ¼ Ck – {j}, k ¼ k + 1, Ck ¼ Ck ∪ {j}.

Step 7f. If |Ck| ¼ 1, then set l ¼ l – 1.

Step 7g. Set �ðk; lÞ ¼ �ðk; lÞ þmaxfaji; 0g; 8 1 ≤ l 6¼ k ≤ K and i

∈ Cl,

Step 7h. Set �ðl; kÞ ¼ �ðl; kÞ þmaxfaij; 0g, 8 1 ≤ l 6¼ k ≤ K and i

∈ Cl,

Step 7i. Set �ðk; lÞ ¼ �ðk; lÞ þ minfaji; 0g
�� ��; 8 1 ≤ l 6¼ k ≤ K and

i ∈ Cl,

Step 7j. Set �ðl; kÞ ¼ �ðl; kÞ þ minfaij; 0g
�� ��, 8 1 ≤ l 6¼ k ≤ K and

i ∈ Cl.

Step 7k. Go to Step 2.

Step 8. RETRACT. Perform the following substeps.

Step 8a. Set �ðk; lÞ ¼ �ðk; lÞ �maxfaji; 0g; 8 1 ≤ l 6¼ k ≤ K and i

∈ Cl,

Step 8b. Set �ðl; kÞ ¼ �ðl; kÞ �maxfaij; 0g, 8 1 ≤ l 6¼ k ≤ K and i

∈ Cl,

Step 8c. Set �ðk; lÞ ¼ �ðk; lÞ � minfaji; 0g
�� ��; 8 1 ≤ l 6¼ k ≤ K and

i ∈ Cl,

70 Sociological Methods & Research 40(1)



Step 8d. Set �ðl; kÞ ¼ �ðl; kÞ � minfaij; 0g
�� ��, 8 1 ≤ l 6¼ k ≤ K and

i ∈ Cl,

Step 8e. Set Ck ¼ Ck – {j}.

Step 8f. If |Ck| ¼ B, then set l ¼ l + 1.

Step 8g. Set j ¼ j – 1.

Step 8h. If j ¼ 0, then STOP; otherwise, set k ¼ l : j ∈ Cl and go to

Step 6.

The cluster assignments and bounds are initialized in Step 0. The vertex in-

dex pointer, j, is advanced in Step 1, and the vertex index is assigned to clus-

ter k ¼ 1. Steps 1a through 1d augment the contribution to the positive and

negative block sums from the actual assignment of j to cluster k. If m – j < l
at Step 2, then there are too few vertex indices remaining to fill the empty

clusters, which results in control being passed to Step 6 for allocation of

the partial solution. If m – j ≥ l at Step 2, then the bound test is performed

in Step 3. The first component of the upper bound on the objective function

that can be realized via completion of the partial solution is the objective

function value of the current partial solution (Z) computed in Step 3a. The

second component from Step 3b is an upper bound on the contribution among

the m – j unassigned vertices, which is obtained from the branch-and-bound

algorithm on an earlier repetition. The third component from Step 3c is com-

puted as an upper bound on the contribution that can occur between the

assigned and unassigned vertices. If (Z + Z�(m – j) + Z0) is less than or equal

to ZLB, then pursuing the current partial solution cannot possibly lead to

a complete solution with a better objective function value than ZLB and con-

trol is passed to Step 6 for allocation. If a partial solution reaches Step 4, then

it has passed the pruning tests and a check is made to see if the solution is, in

fact, complete. If j < m at Step 4, then control is passed to Step 1 for advance-

ment of the vertex index pointer and assignment; however, if j ¼ m, then

control is passed to Step 5 where the complete solution becomes the new in-

cumbent partition and provides a new lower bound, ZLB.

Step 6 allocates a solution for either a ‘‘branch right’’ operation in Step 7

or retraction in Step 8. If k < K and |Ck| > 1 in Step 6, then control is passed to

Step 7, which performs the branching operation by moving the current vertex

from cluster k to cluster k + 1 (i.e., the cluster on the right). Steps 7a through

7d remove the contribution stemming from the assignment of vertex j to its

current cluster k. Step 7e moves the vertex to the next cluster, and Step 7f

reduces the number of empty clusters if j is the first vertex in that new cluster.

The contribution to the objective function for vertex j in its new cluster is

updated in Steps 7g through 7j. Control is passed back to Step 2 via Step

Brusco et al. 71



7k. If k ¼ K or |Ck| ¼ 1 in Step 6, then there is no reason to move the current

vertex index to the next cluster and control is passed to Step 8 for retraction.

Retraction involves traversing backward in the search tree, and when this tra-

versal returns the algorithm to the root node of the branch-and-bound search

tree (i.e., j ¼ 0), the algorithm terminates.

Modified Branch-and-Bound Algorithm for Finding Multiple Optima

On convergence, the branch-and-bound algorithm finds a partition of vertices

that is guaranteed to be a globally optimal solution to the partitioning prob-

lem posed by equations (2) through (7). The obtained partition, however, is

not necessarily the only globally optimal partition. We have developed

a modified version of the branch-and-bound algorithm that will store up to

5,000 globally optimal partitions, which is more than sufficient to accommo-

date all of the optimal partitions in typical test problems from the literature.

The program can be modified to store more than 5,000 partitions, if neces-

sary; however, limits on computer memory can present a problem if the num-

ber of multiple optima far exceeds 5,000. We recommend that the branch-

and-bound algorithm be implemented to obtain the optimal objective func-

tion value, Z�. Next, we use ZLB ¼ Z� in the modified program to find all

partitions that yield the optimal objective function value. The modified algo-

rithm required only minor adjustments to Steps 4 and 6 of the algorithm. In

Step 4, we replace ≤ with < to ensure that partitions with the optimal objec-

tive function value will be collected, and a routine is added in Step 5 to enu-

merate and store the optimal partitions.

As noted earlier, multiple optima have important pragmatic ramifications.

When alternate optima differ only by relocation of one or two vertices across

clusters, the block structures are the same. When two different block struc-

tures yield the same objective function, this suggests instability in the parti-

tioning process. As with the relocation method, values of K for which

multiple block structures exist are typically discarded.

Comparing the Objectives of the Branch-and-Bound and Relocation
Algorithms

At first sight, the branch-and-bound and relocation algorithms appear to

differ and raise the issue for finding different outcomes. However, this is

not the case. Consider the term Z ¼
PK
k¼1

PK
l¼1

maxf�ðk; lÞ;�ðk; lÞg from the
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branch-and-bound algorithm. If we accept the identification of positive and

negative blocks, then maximizing Z while summing over the blocks is equiv-

alent to minimizing P(C). Given the presentation of the relocation algorithm,

let PT be the sum of the values for all of the positive ties in the network and

let N T be the sum for all of the negative ties in the network. The sum of the

correctly located positive ties relative to structural balance is (PT – P), and

the sum of the correctly located negative ties relative to structural balance is

(N T – N ). Maximizing Z is equivalent to maximizing [(PT – P) + (N T –

N )], and this is the same as maximizing [(PT + N T) – (P +N )]. Given

that (PT +N T) is fixed for a network, this maximization is equivalent to min-

imizing (P +N ). The same argument10 holds when differential weighting of

the positive and negative ties is included when using a in equation (1). Under

the assumption of a ¼ 0.5, the criterion function in equation (1) can be com-

puted for the branch-and-bound solution as follows:

PðX Þ ¼ ðZUB � Z�Þ
2

: ð11Þ

Results and Analyses for Empirical Network Matrices

Modestly Sized Network Matrices

We applied the branch-and-bound procedure to five network matrices from

the blockmodeling literature. The first three of these matrices correspond

to data obtained from female students at three different off-campus dormito-

ries at an eastern college. The data were collected by Lemann and Solomon

(1952). Blockmodeling analyses of these matrices were performed by

Doreian (2008). The three matrices are labeled House A (m ¼ 21), House

B (m ¼ 18), and House C (m ¼ 20). The fourth matrix was obtained

from a well-known sociometric study originally conducted by Sampson

(1968), with subsequent analyses by numerous authors (Breiger et al.

1975; Doreian 2008; Doreian and Mrvar 1996, 2009; Faust 1988; White,

Boorman, and Breiger 1976). Following Doreian and Mrvar (2009), we

summed the ‘‘affect,’’ ‘‘esteem,’’ and ‘‘respect’’ relations at time period

four to obtain an 18 × 18 matrix of signed relations. We refer to this matrix

as ‘‘Sampson_T4.’’ The fifth data set also corresponds to a well-known so-

ciometric study of m ¼ 17 men at a university dormitory (Newcomb 1961).

We consider a particular network matrix produced from the original data by

Doreian and Mrvar (2009). One of the two optimal 4-cluster partitions for

these data is shown in Figure 2 to give a sense of the partition structures pro-

duced. The squares and diamonds in Figure 2 represent positive and negative
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ties, respectively. There are five inconsistencies with relaxed structural bal-

ance in Figure 2, resulting in a criterion function value from equation (1) of

2.5 with a ¼ 0.5.

For each of these matrices, we applied the branch-and-bound and reloca-

tion algorithms six times, once each for 2 ≤ K ≤ 7 clusters, resulting in a to-

tal of 30 test structures. For each test, data were collected with respect to the

upper bound (ZUB), the optimal objective function value, Z�, and the criterion

function in (1) assuming a ¼ 0.5. Next, using the obtained value of Z� as

input, we ran the modified version of the branch-and-bound program that

obtains all of the multiple optima. The exact number of unique optima

was collected for every analysis. Table 1 provides the results for each of

the five network matrices at each of the six values of K.

The salient results of our computational results are for each test structure:

(i) the branch-and-bound algorithm obtained and confirmed a globally opti-

mal partition, (ii) the relocation algorithm obtained a globally optimal parti-

tion, (iii) the modified branch-and-bound algorithm provided all of the
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A B D F I L Q E H M G K N C J O P

Figure 2. Partition structure for the Newcomb final week: K ¼ 4
Note: The squares represent positive ties, and the diamonds represent negative ties.
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globally optimal partitions, and (iv) the relocation algorithm identified all of

the globally optimal partitions. At a minimum, use of the branch-and-bound

algorithm, with its guarantee of locating genuinely optimal solutions, appears

to settle the issue regarding the argument that the relocation algorithm need

not identify optimal partitions for most networks of this size in favor of this

method. Even so, it would be prudent to not assume that the relocation meth-

od will always do this because the performances of algorithms are affected

Table 1. Computational Results for Empirical Network Matrices

Data set K ZUB Z
Penalty index

criterion function
Number
of optima

House (A) 2 504 408 48.0 1
3 504 454 25.0 1
4 504 473 15.5 1
5 504 477 13.5 9
6 504 483 10.5 1
7 504 487 8.5 1

House (B) 2 406 322 42.0 1
3 406 337 34.5 1
4 406 350 28.0 2
5 406 363 21.5 1
6 406 373 16.5 2
7 406 378 14.0 1

House (C) 2 462 398 32.0 1
3 462 409 26.5 2
4 462 419 21.5 4
5 462 427 17.5 6
6 462 433 14.5 2
7 462 438 12.0 4

Sampson (Time 4) 2 612 526 43.0 1
3 612 558 27.0 1
4 612 576 18.0 1
5 612 587 12.5 1
6 612 596 8.0 1
7 612 600 6.0 4

Newcomb (Week 15) 2 119 109 5.0 2
3 119 112 3.5 5
4 119 114 2.5 2
5 119 116 1.5 3
6 119 118 0.5 2
7 119 119 0.0 5
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by network structures. To explore this issue further, we examine a larger em-

pirical network matrix.

A Larger, More Challenging Empirical Matrix

The identification of large signed network matrices that are published in the

social network literature is a difficult task. After some searching, we were

able to locate a large signed network based on data collected by McKinney

(1948), who sought to discover what relationships existed among children in

a ninth-grade classroom as well as their expressed reasons for the choices

they made. They were ‘‘asked to express their attitude towards serving in

a discussion group with other members of the class’’ (McKinney

1948:357).11 The data were recorded as being willing to serve with other

children (+1), not being willing to serve (–1), and indifferent (0). We

extracted the reciprocated positive and negative preferences for participating

with others. These relational data are much denser than the signed data usu-

ally collected in this early era of sociometric data collection when choices,

both positive and negative, were restricted in the prevailing fixed choice

instruments (usually three choices).

The McKinney network matrix presents a more formidable challenge than

those analyzed in the previous subsection, for three reasons: (1) It is a larger

(29 × 29) network, (2) the relational density is high (31.4 percent), and (3)

it has a skewed distribution of nonzero matrix elements (246 elements of 1,

but only 18 elements of –1). We applied the branch-and-bound algorithm to

the McKinney network matrix for 2, 3, and 4 clusters. In each instance, an op-

timal partition was obtained in less than five seconds. The optimal criterion

function values for 2, 3, and 4 clusters were 4.0, 1.0, and 0.0, respectively. Un-

fortunately, the optimal partitions were not unique. In fact, we generated 30,

873, and 3,528 unique optimal partitions for 2, 3, and 4 clusters, respectively.

One of the optimal 4-cluster partitions is shown in Figure 3.

The relocation heuristic experienced considerable difficulty with the

McKinney network matrix. For K ¼ 4 clusters, we restarted the heuristic

five times, with 1 million repetitions for each restart. Each restart required

approximately five minutes of computation time, and the best-found criterion

function was 1.0. Accordingly, for this particular network matrix, there was

considerable value afforded by the branch-and-bound algorithm with respect

to both finding an optimal partition and generating a large set of alternative

optimal solutions. Our conjecture is that the principal reason that the reloca-

tion heuristic struggled with this particular matrix is the tremendous disparity

in the number of positive and negative elements.
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Simulation Experiment

Test Problems

Most of the empirical signed network matrices in the blockmodeling litera-

ture are of size 25 × 25 or smaller. The branch-and-bound algorithm typi-

cally obtains optimal partitions for most networks of this size within a few

minutes of microcomputer computation time, and often within seconds.

Moreover, as noted above, the relocation algorithm has no difficulty locating

the optimal partition for empirical networks of this size. To provide a more

in-depth investigation of the performances of the branch-and-bound and
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Figure 3. Partition structure for the McKinney data: K ¼ 4
Note: The squares represent positive ties, and the diamonds represent negative ties.
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relocation algorithms, we conducted a simulation experiment. Test problems

were generated by manipulating five network features, each with two levels.

The first feature, the number of vertices, was set at levels of m ¼ 20 and

m ¼ 40. The levels of the second feature, the number of clusters for the ver-

tices, were K ¼ 3 and K ¼ 5. The third feature, within-block density, repre-

sents the approximate percentage of nonzero elements within each block of

the network matrix. The levels of the third feature were 40 percent and 80

percent. The levels of the fourth feature, the percentage of positive blocks,

were 50 percent and 70 percent. For example, given that the total number

of blocks is K2, the 70 percent setting would imply that the number of

positive blocks is d.7 × K2e and the number of negative blocks is

K2 – d.7 × K2e, where dge denotes the smallest integer greater than or equal

to g. The fifth feature, the level of error perturbation, was tested at levels of

e ¼ 10 percent and e ¼ 20 percent.

The generation of a test problem begins with the assignment of the m ver-

tices into K clusters, such that the number of vertices in each cluster is ap-

proximately the same. Next, either 50 percent or 70 percent of the K2 blocks

were specified as positive, and the remaining blocks were negative. The loca-

tions of the positive blocks in the image matrix were randomly selected. All

elements in the network matrix were initially assigned a value of 0. Within

each positive (negative) block, each element within the block had either

a 40 percent chance or an 80 percent chance of being changed from 0 to

+1 (–1); however, all diagonal elements remained equal to 0. Upon comple-

tion of the process, the network matrix has a ‘‘perfect’’ relaxed structural bal-

ance because all positive blocks have elements that are either 0 or 1 and all

negative blocks have elements that are either 0 or –1. To eliminate this per-

fect structure, the sign of each nonzero matrix element had either a 10 percent

or 20 percent chance of being reversed. We found that this perturbation pro-

cess maintained sufficient structure in the network, while at the same time

providing two distinct degrees of departure from perfect structure.

The manipulation of five features at two levels each resulted in an exper-

imental design with 25 ¼ 32 cells. Three test problem replicates were gen-

erated for each cell, resulting in a total of 96 unique test problems.

Performance Measures

The simulation experiment was designed to answer three questions: (1) What

problem characteristics result in greater difficulty for the branch-and-bound

algorithm with respect to producing optimal solutions? (2) What problem

characteristics result in greater difficulty for the relocation algorithm with
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respect to locating optimal solutions? and (3) Are the problem characteristics

that make reaching solutions more difficult for the branch-and-bound algo-

rithm necessarily the same as those that create difficulty for the relocation

algorithm in finding an optimal solution?

In light of the fact that the branch-and-bound algorithm does not use mul-

tiple restarts, the best measure of problem difficulty is total computation

time. For this reason, the principal performance metric for the branch-and-

bound algorithm is the total time required to obtain and confirm the globally

optimal solution. In contrast, the relocation heuristic does use multiple

restarts and computation time is primarily affected by the choice of the num-

ber of restarts. It is important to remember, however, that even for a large

number of restarts, the relocation heuristic is quite efficient, with far less

computation time variability than the branch-and-bound algorithm. For ex-

ample, the branch-and-bound algorithm might solve one 40-vertex problem

in seconds but require multiple hours for a different 40-vertex problem. For

the same two problems, application of the relocation heuristic with the same

number of restarts is apt to require no more than a few seconds in both

instances.

We use the ‘‘attraction rate’’ as measure of performance for the relocation

heuristic. The attraction rate is the percentage of restarts for which the globally

optimal solution was obtained. For example, if we ran the relocation heuristic

using 10,000 restarts and obtained the globally optimal solution 100 times,

then the attraction rate would be 100/10,000 ¼ 1 percent. Thus, our estimate

of the probability of the relocation heuristic finding the globally optimal solu-

tion for any given randomly generated starting solution is 1 percent. Note that

even an attraction rate of only 1 percent suggests that the relocation heuristic

would almost certainly find the optimal solution in 1,000 restarts. The proba-

bility of not finding the optimal solution in 1,000 restarts could be estimated as

(1 – .01)1,000 ¼ 4.32 × 10–5, and 2,000 restarts reduces this probability to

(1 – .01)2,000 ¼ 1.86 × 10–9. The key here is that even small attraction rates

often correspond to very high probabilities of finding the optimal solution for

a modest number of restarts (e.g., 10,000).

Results

The branch-and-bound computation time and relocation heuristic attraction

rate for each of the 96 test problems are provided in the appendix (which

can be accessed online at http://smr.sagepub.com/supplemental). A summary

of the results is provided in Table 2. For each level of each feature, Table 2

provides the average branch-and-bound computation time and average
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relocation heuristic attraction rate. The averages across all test problems are

also provided.

The computation times for the branch-and-bound algorithm ranged from

less than 1 second to nearly 75 minutes, with an average of 146.48 seconds.

The number of clusters, K, had the greatest effect on computation time. All 3-

cluster problems were solved in 12 seconds or less; however, 14 of the 5-

cluster problems required at least 100 seconds, and 5 of these required

more than 1,000 seconds. Problem density and error perturbation also had

strong effects on computation time. All 14 of the problems requiring more

than 100 seconds were 40 percent block density, and 12 of these 14 problems

had an error perturbation of e ¼ .02.

The relocation heuristic was run on different hardware and software plat-

forms; however, it is fair to conclude that 100,000 restarts of the relocation

heuristic required far less time than even the average branch-and-bound time.

Thus, the computation time advantage for the heuristic is unequivocal. The

overall attraction rate for the relocation heuristic was an astonishing 48.33

percent, revealing the general efficacy of this procedure. An inspection of

the attraction rates for each feature level, which are provided in Table 2,

reveals that four of the five features did not seem to have a profound effect

on this performance measure. For example, the number of clusters (K), which

had the strongest effect on branch-and-bound computation time, appears to

have only a limited effect on the attraction rate. The average attraction rates

at K ¼ 3 and K ¼ 5 are 49.71 percent and 47.96 percent, respectively. The

Table 2. Simulation Results: A Summary for the Levels of Each Feature

Feature levels

Mean computation time
for the branch-and-bound

algorithm

Mean attraction rate
for the relocation

heuristic

m ¼ 20 actors 85.27 47.79
m ¼ 40 actors 207.68 49.88
K ¼ 3 clusters 2.55 49.71
K ¼ 5 clusters 290.40 47.96
40% within-cluster density 285.75 45.50
80% within-cluster density 7.21 52.17
50% positive blocks 108.86 73.48
70% positive blocks 184.09 24.19
10% error perturbation 17.53 50.17
20% error perturbation 275.42 47.50
Overall averages 146.48 48.33
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only feature with a clearly evident strong effect on attraction rate was the per-

centage of positive blocks, where the average attraction rates were 73.48 per-

cent and 24.19 percent for the levels of 50 percent and 70 percent positive

blocks, respectively.

Our investigation of feature interactions on attraction rates revealed an

especially interesting relationship between the number of clusters and the

percentage of positive blocks. A visual description of this relationship is pro-

vided in Figure 4. At K ¼ 5 clusters and 50 percent positive blocks, the av-

erage attraction rate was 55.83 percent. The average attraction rate for K ¼ 5

clusters and 70 percent positive blocks is slightly lower at 40.08 percent. The

attraction rate differences at K ¼ 3 clusters present a much different scenar-

io. At K ¼ 3 and 50 percent positive blocks, the average attraction rate was

an 91.13 percent; however, at K ¼ 3 and 70 percent positive blocks, the av-

erage attraction rate was only 8.30 percent. The strong interaction with
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Figure 4. A Number of Clusters × Percentage of Positive Blocks interaction plot
for the attraction rate of the relocation heuristic
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crossover effect displayed in Figure 4 clearly reveals that the number of clus-

ters does affect attraction rate, a finding that is masked by the approximately

equal averages for K ¼ 3 and K ¼ 5 shown in Table 2. The largest attraction

rates associated with the relocation heuristic were observed for 3-cluster

problems with 50 percent positive blocks, but the smallest attraction rates

were observed for 3-cluster problems with 70 percent positive blocks. In

fact, there were four instances of 3-cluster, 70 percent positive-block prob-

lems where the attraction rate was less than 0.1 percent.

Together, the results in Table 2 and Figure 4 suggest that the characteris-

tics that make problems difficult for the branch-and-bound algorithm are not

the same as those that create challenges for the relocation heuristic. For

example, the percentage of positive blocks had the largest effect on the at-

traction rate of the relocation heuristic, but this same feature had the smallest

effect on the computation time of the branch-and-bound algorithm. Perhaps

even more interesting are the differences observed regarding the number of

clusters. The number of clusters had the strongest effect on branch-and-

bound computation time, with problems at K ¼ 5 taking much longer to

solve than those for K ¼ 3. Contrastingly, the attraction rates for the reloca-

tion heuristic were consistently large at K ¼ 5 clusters but differed greatly

for K ¼ 3 clusters, depending on the percentage of positive blocks. In sum-

mary, 5-cluster problems were the most difficult for the branch-and-bound

algorithm, whereas 3-cluster problems with 70 percent positive blocks

were the most challenging for the relocation heuristic. We note that the dif-

ficulties encountered when using the relocational algorithm on the

McKinney data are consistent with these simulation results.

Conclusion

Comparing and Contrasting the Two Algorithms

The branch-and-bound and relocation algorithms each possess certain advan-

tages relative to one another. The principal, and perhaps only, advantage

of the branch-and-bound algorithm can be summed up in one word: guaran-

tee. The branch-and-bound algorithm provides an unequivocal guarantee of

a globally optimal partition that is not afforded by the relocation heuristic.

Moreover, the modified branch-and-bound algorithm can collect all of the

globally optimal partitions, provided that the number of global optima would

not result in storage requirements that exceed computer memory. The relo-

cation algorithm also stores multiple optimal partitions; however, there is

no guarantee that all of the optima will be identified.
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The advantage of the branch-and-bound procedure notwithstanding, there

are many compelling arguments for preferring the relocation procedure. First,

as our results suggest, for problems that can be tackled using the branch-and-

bound approach, the relocation heuristic also obtains the globally optimal par-

tition. Second, the scalability of the branch-and-bound procedure is limited by

the values of m and K, as well as the distribution of elements in the network

matrix, A. As noted previously, if the bounds for a particular network matrix

are not sharp, the branch-and-bound procedure can devolve into a near-com-

plete enumeration of all partitions, which can result in astronomical computa-

tion times. In contrast, the relocation algorithm can accommodate large m and

K, and its scalability is much less affected by the properties of the network ma-

trix. Yet, it is not immune to these problems. Third, a critical advantage of the

relocation algorithm is flexibility. Modification of the branch-and-bound algo-

rithm to accommodate alternative objective criteria, or the identification of

null blocks in addition to positive and negative blocks, is nontrivial. The relo-

cation algorithm can be adapted easily for alternative block types and objective

functions. Fourth, the relocation algorithm has the advantage of availability in

the Pajek software system for social networks (see de Nooy, Mrvar, and Bata-

gelj 2005, for a systematic presentation of Pajek).

In summary, the new branch-and-bound algorithm has inherent mathe-

matical value as a methodological approach for obtaining guaranteed optimal

partitions for problems of nontrivial size. Moreover, its development has pro-

vided a mechanism for benchmarking the performance of Doreian and

Mrvar’s (2009) relocation heuristic with respect to finding all of the optimal

partitions for well-structured networks of modest size. In light of this contri-

bution, we can now confidently conclude that the relocation procedure is

obtaining optimal partitions to modestly sized problems from this literature,

which solidifies its position as the recommended methodology for relaxed

structural balance partitioning. In terms of the theory–model–data triangle,

the convergence of two algorithms provides more confidence for establishing

partitions of signed networks consistent with the formalization of relaxed

structural balance. Yet, we caution against using only the relocation algo-

rithm for networks larger than the empirical ones considered here. Moreover,

there are design features of network structures that were not considered in our

construction of synthetic test problems (e.g., matrix symmetry).

Extensions

There would seem to be considerable room for the development and evalu-

ation of exact and approximate algorithms for relaxed structural balance.
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With respect to exact procedures, the establishment of stronger pruning rules

could improve the scalability of branch-and-bound methods. Alternatively,

approaches based on column generation and/or cutting planes have proven

effective for similar classes of clustering problems (see Hansen and Jaumard

1997) and should provide an important avenue for future research. In addi-

tion to expanding the computational feasibility of exact approaches, efforts

could also be made to improve their flexibility. For example, exact methods

for more general block structures, as well as two-mode proximity data, would

provide a valuable contribution.

Although we have shown that the relocation heuristic obtained optimal

solutions for the modestly sized networks considered in this article, these

results do not necessarily generalize to larger problem instances. For exam-

ple, in other partitioning contexts (Brusco and Köhn, forthcoming; Brusco

and Steinley 2007), experimental studies have shown that multistart imple-

mentations of relocation algorithms can be outperformed by more sophisti-

cated metaheuristics such as genetic algorithms, simulated annealing, tabu

search, and variable neighborhood search. Accordingly, another interesting

area for further investigation is the evaluation of the relocation heuristic in

comparison to metaheuristic procedures.
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Notes

1. While the first published statement for this program appeared in 1998, it is con-

tinually updated to include more network analytic methods as new ideas are cre-

ated and better algorithms are established. The same is true for UCINET.
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2. Because n is used in the structural balance literature to denote negative ties, we

use m to denote the number of actors (vertices) in a network.

3. Equivalently, an alternative representation is s: A ! {+1, –1} where +1 and –1

denote the signs.

4. For formal completeness, one of these sets may be empty.

5. When partitioning signed networks that are not exactly K balanced, an identified

positive block can contain negative ties as inconsistencies and identified negative

blocks can contain positive ties as inconsistencies.

6. Note that if the network is a binary network then P is the number of the positive

ties between plus-sets and N is the number of negative ties within plus-sets.

7. We have encountered no examples using valued signed networks that contradict

this result and conjecture that it generalizes for valued signed networks.

8. This behavior is the same as for the criterion function for structural equivalence.

9. This mirrors the phenomenon of finding ‘‘floaters’’ for an early blockmodeling

program proposed by Heil and White (1976) in terms of structural equivalence.

10. This assumes that the diagonal of the relational matrix, A, has only null values.

Usually, this is the case for social networks.
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