
A
w

M
a

b

a

K
B
C
G
H
R
T

1

c
a
o
m
o
o
s
m
r
l
t
o
f

S

p

s
f

h
0

Social Networks 41 (2015) 26–35

Contents lists available at ScienceDirect

Social  Networks

jo u r n al hom ep age: www.elsev ier .com/ locat e/socnet

 real-coded  genetic  algorithm  for  two-mode  KL-means  partitioning
ith  application  to  homogeneity  blockmodeling

ichael  Bruscoa,∗,  Patrick  Doreianb

Florida State University, United States
University of Ljubljana, Slovenia and University of Pittsburgh, United States

 r  t  i  c  l e  i  n  f  o

eywords:
lockmodeling
lustering
enetic algorithm
omogeneity blockmodeling

a  b  s  t  r  a  c  t

The  two-mode  KL-means  partitioning  (TMKLMP)  problem  has  a  number  of  important  applications  in  the
social  and  physical  sciences.  For  example,  the  intra-block  variability  measure  associated  with  TMKLMP
underscores  its  direct  relevance  to  two-mode  homogeneity  blockmodeling  of binary  and  real-valued
social  networks.  We  present  a real-coded  genetic  algorithm  for obtaining  TMKLMP  solutions.  A simulation
eal coding
wo-mode KL-means partitioning

study  showed  that the  new  algorithm  compares  favorably  to a  multistart  implementation  of a  two-
mode KL-means  heuristic,  which  is recognized  as  a top-performing  method  for  TMKLMP.  The  merit  of
the  proposed  method  is  demonstrated  via  an application  to the blockmodeling  of  social  network  data
associated  with  signing  of  environmental  advertisements  in the  New  York  Times  as  a part  of  the  Turning
Point  Project.

© 2014  Elsevier  B.V.  All  rights  reserved.
. Introduction

Consider a typical data matrix where the rows of the matrix
orrespond to n respondents and the columns correspond to m vari-
bles on which those respondents are measured. The data consist
f measurements for each respondent on each variable. A com-
on  clustering approach for such data is to establish a measure

f proximity (e.g., squared Euclidean distance) between each pair
f respondents using their respective variable measurements and,
ubsequently, cluster the respondents based on those proximity
easures. This is a one-mode clustering problem because only the

espondents are clustered. The information in the variables is col-

apsed to establish the proximity measures for the respondents, but
he variables are not clustered. A two-mode clustering problem is
ne that would require the establishment of a clustering solution
or both the respondents and the variables.1

∗ Corresponding author at: Department of Marketing College of Business, Florida
tate University, 821 Academic Way, Tallahassee, FL 32306-1110, United States.

E-mail addresses: mbrusco@fsu.edu, mbrusco@cob.fsu.edu (M.  Brusco),
itpat@pitt.edu (P. Doreian).
1 More generally, two-mode clustering requires the assignment of two distinct

ets of objects to clusters. Each set is a ‘mode’ of the data, and the number of clusters
or each mode need not be the same.

ttp://dx.doi.org/10.1016/j.socnet.2014.11.007
378-8733/© 2014 Elsevier B.V. All rights reserved.
Applications of two-mode clustering abound in the blockmodel-
ing of social network data (Borgatti and Everett, 1997; Brusco, 2011;
Brusco et al., 2013a, 2013b, 2013c; Brusco and Steinley, 2007b,
2011; Doreian et al., 2004, 2005, 2013; Everett and Borgatti, 2013;
Latapy et al., 2008). Two-mode clustering problems also arise in
several other scientific domains, such as the clustering of gene
expression data in the biological sciences (Madeira and Oliveira,
2004; Prelić et al., 2006; van Uitert et al., 2008) and part-machine
grouping problems in industrial engineering (Selim et al., 1998).
The many different formulations of two-mode clustering problems
contrast in ways largely based on the nature of the application.
Although the complexity of two-mode clustering is apt to vary
across different objective criteria and constraints, Madeira and
Oliveira (2004, p. 26) observed “. . .almost all interesting variants
of this problem are NP-complete.” Excellent surveys of two-mode
clustering formulations and algorithms are provided by Madeira
and Oliveira (2004) and van Mechelen et al. (2004).

Here, we  focus on a two-mode generalization of minimum
sum-of-squares clustering, which is a one-mode problem com-
monly known as K-means clustering (Steinhaus, 1956; Forgy,
1965; MacQueen, 1967). Although less well-known, there is a
two-mode extension of K-means clustering that requires the simul-

taneous partitioning of two  distinct sets of objects (Baier et al.,
1997; Brusco and Doreian, in press; Brusco and Steinley, 2007b;
Gaul and Schader, 1996; van Rosmalen et al., 2009; Vichi, 2001).
Throughout the remainder of this paper, we focus on this particular

dx.doi.org/10.1016/j.socnet.2014.11.007
http://www.sciencedirect.com/science/journal/03788733
http://www.elsevier.com/locate/socnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.socnet.2014.11.007&domain=pdf
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eneralization of K-means clustering, which we hereafter refer to
s the two-mode KL-means partitioning (TMKLMP) problem.2

The objective criterion of TMKLMP is a homogeneity measure
hat is defined as the sum-of-squared deviations of matrix ele-

ents from the means associated with blocks (submatrices) of
lements formed by the intersection of the clusters for the two  sets
f objects. This type of intra-block variance measure for two-mode
lustering dates back (at least) to the work of Hartigan (1972), with
ubsequent important contributions in the statistical literature by
eSarbo (1982) and Both and Gaul (1985, 1987). Within the context
f social network analysis, it has been recognized that intra-block
ariance homogeneity measures can be used for the blockmodeling
f both real-valued and binary networks based on structural equiv-
lence (Borgatti and Everett, 1992; Brusco and Steinley, 2007b;

ˇiberna, 2007). Although well-suited for structural equivalence,
imulation results reported by Žiberna (2009) reveal that intra-
lock variance measures also perform well for blockmodeling based
n regular equivalence.

Since the mid-1990s, a number of heuristic algorithms have
een proposed for TMKLMP. These algorithms include alternat-

ng least squares (Gaul and Schader, 1996), two-mode K-means
Baier et al., 1997; Vichi, 2001), simulated annealing (Trejos and
astillo, 2000), genetic algorithms (Hansohm, 2002), tabu search
Castillo and Trejos, 2002), variable neighborhood search (Brusco
nd Steinley, 2007b) and fuzzy steps (van Rosmalen et al., 2009).
ore recently, an exact solution procedure was devised by Brusco

nd Doreian (in press). However, its application is limited to small
atrices (20 or fewer row/column objects).
The most comprehensive comparison of methods to date was

erformed by van Rosmalen et al. (2009, p. 179), who  concluded
. . .the best average performance is obtained using the two-mode
-means method. . .”.  The exceptional performance of two-mode
-means clustering in the van Rosmalen et al. (2009) TMKLMP
tudy is concordant with results for one-mode K-means clustering
n a study conducted by Brusco and Steinley (2007a). For example,
oth comparative studies showed the superiority of K-means to

mplementations of tabu search and simulated annealing. However,
rusco and Steinley (2007a) also found that a genetic algorithm
erformed slightly better than K-means. In light of this finding, it
eems reasonable to contemplate the design of a genetic algorithm
or the TMKLMP and a comparison of its performance to two-mode
-means clustering. An earlier investigation of this possibility was
onducted by Hansohm (2002), who proposed an integer-coded
enetic algorithm for TMKLMP. The integer coding corresponds to
he fact that the chromosomes in the population were vectors of
luster assignments for the two modes, and each gene of the chro-
osome was an integer value indicating the cluster to which each

bject was assigned. As noted by van Rosmalen et al. (2009), the
nteger-coded genetic algorithm was much less effective relative
o its performance in the one-mode context.

Here, we present a real-coded genetic algorithm for the TMKLMP
herein the chromosomes of the algorithm are the ‘real-valued’

entroids of solutions to the TMKLMP. Our selection of this
pproach is based on three notions: (1) the genetic algorithm that
erformed so well in Brusco and Steinley’s (2007a) one-mode K-
eans comparative study was a real-coded genetic algorithm; (2)

ith the real-coding approach, the chromosome vectors are much

horter in length and cluster center information is better preserved
n the crossover operation that produces ‘offspring’ chromosomes

2 Some authors (Brusco and Steinley, 2007b; van Rosmalen et al. 2009) have
mployed the term ‘two-mode K-means’ to refer to the same problem. We adopt the
erm ‘two-mode KL-means’ recently used by Brusco and Doreian (in press) which
xplicitly reflects the fact that the number of clusters for the first mode (K) need not
e  the same as the number of clusters for the second mode (L).
tworks 41 (2015) 26–35 27

from splicing two  parent chromosomes; and (3) the two-mode K-
means clustering algorithm can efficiently and effectively refine the
offspring chromosome.

Section 2 provides a formal presentation of the TMKLMP and
describes the real-coded genetic algorithm for its solution. Compu-
tational results for the proposed method are reported in Section 3.
An empirical application related to two-mode homogeneity block-
modeling is presented in Section 4. The paper concludes in Section
5 with a summary and a discussion of possible extensions.

2. Two-mode KL-means partitioning

2.1. Formulation

The notation for the presentation of TMKLMP is provided in
Table 1. The optimization problem associated with TMKLMP (Baier
et al., 1997; Brusco and Steinley, 2007b; Gaul and Schader, 1996;
Hansohm, 2002; Trejos and Castillo, 2000; van Rosmalen et al.,
2009; Vichi, 2001) is to find the partitions � and ω that minimize the
total sum-of-squared error variation3 across all KL blocks, which is
formally stated as follows:

min
� ∈ ˘,ω ∈ ˝

: f (�, ω) =
K∑

k=1

L∑

l=1

vkl. (1)

The minimization of the total sum-of-squared error variation
across the blocks is equivalent to maximizing the total variation-
accounted-for (VAF) in X:

VAF = vaf (�, ω) = (v − f (�, ω))
v

(2)

The total number of partitions in  ̆ and  ̋ are Stirling numbers
of the second kind (Clapham, 1996). Since any partition of the mode
1 objects can be matched with any partition of the mode 2 objects,
the solution space for TMKLMP is the product of these two Stirling
numbers. Essentially, the implications of this result are that the
solution space grows exponentially as a function of n and m.

2.2. A two-mode KL-means heuristic

A straightforward heuristic strategy for TMKLMP is based on the
extension of K-means clustering heuristics (Forgy, 1965; Steinhaus,
1956). A two-mode adaptation of K-means clustering is described
by Baier et al. (1997) as well as several other sources (Vichi,
2001; Brusco and Steinley, 2007b; van Rosmalen et al., 2009). The
two-mode KL-means heuristic (TMKLMH) consists of the following
steps:

Step TMKLMH0. Construct random initial partitions, � and ω,  for
the mode 1 and mode 2 object sets respectively, and compute
f* = f(�,ω).
Step TMKLMH1. Reassignment of Mode 1 Objects.
Step TMKLMH1a: Compute x̄kl for all 1 ≤ k ≤ K and 1 ≤ l ≤ L.
Step TMKLMH1b. Compute ˛ik =

∑L
l=1

∑
j ∈ Tl

(xij − x̄kl)
2 1 ≤ i ≤ n

and 1 ≤ k ≤ K.
Step TMKLMH1c. Update � by setting i ∈ Sk: ˛ik = min

1≤h≤K
{˛ih}, for all

1 ≤ i ≤ n.

Step TMKLMH1d. If Sk = ∅  for any k (1 ≤ k ≤ K), then set i′ ∈ Sk:
˛i′ = max

1≤i≤n
{ min
1≤h≤K

{˛ih}}. Set ˛i′k = 0 and repeat this step as needed

to ensure no empty clusters.

3 The use of sum-of-squares error variation in two-mode clustering was originally
suggested by Hartigan (1972), who  sought to minimize this criterion using a divisive
hierarchical algorithm for splitting the dataset into a pre-specified number of blocks.
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Table 1
Notation.

n = the number of objects for mode 1 (the rows);
m = the number of objects for mode 2 (the columns);
X = a �n×m two-mode matrix;
K = the number of clusters for mode 1;
L  = the number of clusters for mode 2;
� = the set of all partitions of the mode 1 objects into K clusters;
� = a partition, (� = {S1,. . .,SK}) ∈ �,  of the mode 1 objects into K clusters, where Sk is the set of objects assigned to cluster k and nk = ∣

Sk
∣

is the number of objects in
Sk , for all 1 ≤ k ≤ K;

 ̋ = the set of all partitions of the mode 2 objects into L clusters;
ω = a partition, (ω = {T1,. . .,TL}) ∈ ˝,  of the mode 2 objects into L clusters, where Tl is the set of objects assigned to cluster l and ml = ∣

Tl
∣

is the number of objects in Tl ,
for  all 1 ≤ l ≤ L;

x̄ = the grand mean of X, x̄ =
∑n

i=1

∑m

j=1
xij/nm;

v = the total (sum-of-squares) variation in X, v =
∑n

i=1

∑m

j=1
(xij − x̄)

2

x̄kl = the mean of the elements in the block (*) formed by the mode 1 objects in cluster Sk and the mode 2 objects in cluster Tl , x̄kl =
∑

i ∈ Sk

∑
j ∈ Tl

xij/nkml ,

for  all 1 ≤ k ≤ K and 1 ≤ l ≤ L;
vkl = the intra-block sum-of-squared error variation in the block formed by the mode 1 objects in cluster Sk and the mode 2 objects in cluster Tl ,

vkl =
∑

i ∈ Sk

∑
j ∈ Tl

(xij − x̄kl)
2,

for all 1 ≤ k ≤ K and 1 ≤ l ≤ L.
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A ‘block’ is, essentially, the submatrix of X formed by the rows associated with 

erm  comes from the blockmodeling literature (see Doreian et al., 2005).

Step TMKLMH2. Reassignment of Mode 2 Objects.
Step TMKLMH2a: Compute x̄kl for all 1 ≤ k ≤ K and 1 ≤ l ≤ L.
Step TMKLMH2b. Compute ˇjl =

∑K
k=1

∑
i  ∈ Sk

(xij − x̄kl)
2 1 ≤ j ≤ m

and 1 ≤ l ≤ L.
Step TMKLMH2c. Update ω by setting j ∈ Tl: ˇjl = min

1≤h≤L
{ˇjh}, for all

1 ≤ j ≤ m.
Step TMKLMH2d. If Tl = ∅  for any l (1 ≤ l ≤ L), then set j′ ∈ Tl: ˇji =
max
1≤j≤m

{ min
1≤h≤L

{ˇjh}}. Set ˇj′l = 0 and repeat this step as needed to

ensure no empty clusters.
Step TMKLMH3. Compute f(�,ω). If f(�,ω) < f*, then set f* = f(�,ω)
and return to Step TMKLMH1; otherwise, stop.

Defining an iteration as a cycle through Steps TMKLMH1 and
MKLMH2, the computational requirement per iteration is for 2KL
entroids, and the evaluation on nK + mL  possible assignments of
bjects to clusters. The number of iterations required for conver-
ence tends to depend on problem size (i.e., n, m, K, and L) and the
uality of the initial random partition obtained in Step TMKLMH0.

The performance of TMKLMH is sensitive to the initial parti-
ions obtained in Step TMKLMH0 and, therefore, we  recommend
he heuristic be restarted many times (e.g., 500 restarts in the pre-
ious studies by Brusco and Steinley (2007b) and van Rosmalen
t al. (2009)) to avoid the potential for a poor local minimum.
nother important concern is that empty clusters can arise in
teps TMKLMH1c and TMKLMH2c and, accordingly, this is reme-
ied by reassignment of the case that is farthest from its current
luster centroid to the empty cluster (see Steps TMKLMH1d and
MKLMH2d).

In an extensive comparative study reported by van Rosmalen
t al. (2009), a multiple restart (multistart) implementation of
MKLMH generally outperformed all of the following: an exchange
rocedure (Gaul and Schader, 1996); a simulated annealing heuris-
ic (Trejos and Castillo, 2000); and a tabu search method (Castillo
nd Trejos, 2002). Thus, multistart TMKLMH is considered one of
he best available methods for TMKLMP. Nevertheless, computa-
ional results for one-mode K-means clustering (see Brusco and

teinley, 2007a) suggest that embedding K-means heuristics within

 real-coded genetic algorithm can yield better performance than
ultiple restarts alone. Accordingly, in the next subsection, we pro-

ose a new real-coded genetic algorithm for TMKLMP adopting this
trategy.
ode 1 objects in Sk and the columns corresponding to the mode 2 objects in Tl . The

2.3. A real-coded genetic algorithm

An initial population is obtained by applying restarts of
TMKLMH, obtaining the x̄kl values for each solution, and unfolding
these centroids into KL length vectors representing the chromo-
somes. Thus, each unique x̄kl value is a gene of the chromosome.
Offspring centroids are then obtained by crossover operations that
splice the chromosomes of two randomly-selected ‘parents’ from
the population, as well as mutation operations that occasionally
perturb some of the genes in the chromosomes. The precise steps
of our implementation of the two-mode genetic algorithm (TMGA)
are as follows:

Step TMGA0. Establish a population of C chromosomes by run-
ning Cmax restarts of TMKLMH and unfolding the centroids (i.e., the
final x̄kl values) of the C best restarts (i.e., those restarts produc-
ing the C smallest f(�,ω) values) into KL length real-valued vectors.
Define P as the KL × C matrix with columns corresponding to these
chromosomes. Let �* and ω* correspond to the partitions yielding
the minimum value of f(�,ω) across all of the restarts. Set the muta-
tion probability parameter (�), the maximum number of iterations
with no improvement parameter (�max), and its counter � = 0.

Step TMGA1. Crossover (chromosome splicing).
Step TMGA1a: Randomly select two vectors, p1 and p2, from P.
Step TMGA1b. Randomly select an integer, d, on the interval [2,KL-
1].
Step TMGA1c. Create a new chromosome, q, by splicing the first d
elements of p1 with the last KL-d elements of p2.
Step TMGA2. Mutation.
Step TMGA2a: Generate a KL-length vector, u, of uniform [0,1]
random numbers.
Step TMGA2b. If uh < �, then replace qh with a uniformly-
distributed random number on the interval bounded by the
minimum and maximum values in X.
Step TMGA3. Evaluation
Step TMGA3a. Fold q into the x̄kl values.
Step TMGA3b. Using x̄kl as input, apply steps TMKLMH1 and
TMKLMH2 of the TMKLMH procedure to reassign cases and obtain

� and ω.
Step TMGA3c. Compute f(�,ω). If f(�,ω) < f(�*,ω*), then set �* = �,
ω* = ω, � = 0, update P by replacing the chromosome corresponding
to the largest value of the objective function with the x̄kl values for



cial Ne

a
s
v
a
A
f
s
r
T
b
i

u
m
S
T
c
a
T
n
a
b
b
a
i
S
i

3

3

(
T
T
m
m
b
(
s
t
f
t
a
t
t
a
t
d
t

o
n
(
l
t
r
l

from the data generation process as the planted partitions. The ARI,
which is generally recognized as the best standard for measuring
partition agreement (Steinley, 2004), achieves a maximum value
M. Brusco, P. Doreian / So

�* and ω*, and return to Step TMGA1; otherwise, proceed to Step
TMGA3d.
Step TMGA3d. Set � = � + 1. If � > �max, then stop; otherwise, return
to step TMGA1.

Defining an iteration as a cycle through Steps TMGA1, TMGA2
nd TMGA3, the computational requirement for the algorithm con-
ists of random selection of two chromosomes to form a KL-length
ector, a random perturbation operation on the KL-length vector,
nd then iterations of the TMKLMH algorithm until convergence.
s noted in the previous subsection, computational requirement

or TMKLMH is for 2KL centroids, and evaluation of nK + mL pos-
ible assignments of objects to clusters. Accordingly, the run-time
equirement for an iteration of TMGA is not much different from
KMLMH, and fewer iterations are often required for convergence
ecause the initial partition is not random but obtained from splic-

ng together two sets of centroids.
In Step TMGA0, Cmax restarts of the TMKLMH algorithm are

sed to establish an initial population of C chromosomes, and the
utation probability and termination parameters are initialized.

o, for example, if Cmax = 1000 and C = 100, then 1000 restarts of the
MKLMH are applied and the initial population of chromosomes
orresponds to the 100 best solutions (i.e., smallest f(�,ω) values)
cross those 1000 restarts. A crossover operation is used in Step
MGA1 to produce a new ‘offspring’ chromosome. Each gene in the
ew chromosome is mutated with probability � in Step TMGA2. If

 gene is randomly selected for mutation, then this is accomplished
y randomly selecting a real value on the range of the data. If a new
est-found solution is identified in Step TMGA3, then it is installed
nd the index � is reset to zero. The population of chromosomes (P)
s also updated each time a new best-found solution is realized in
tep TMGA3c. If a new best-found solution is not obtained, then �
s incremented, and the algorithm terminates if � > �max.

. Computational results

.1. Experimental design

We  adopt the experimental design used by van Rosmalen et al.
2009) in their comparative evaluation of methods for TMKLMP.
he authors manipulated four design features at three levels each.
he first design feature was the number of objects for mode 1 and
ode 2, which was tested at levels of (n = 60, m = 60), (n = 120,

 = 120), and (n = 150, m = 30). The second design feature, the num-
er of clusters for modes 1 and 2, was tested at levels of (K = L = 3),
K = L = 5), and (K = L = 7). Cluster density, which reflects the relative
izes of the mode 1 and mode 2 clusters, was the third design fea-
ure. The first level of cluster density assumed clusters of equal size
or the two sets of objects. The second level assumed, for each mode,
hat there was one large cluster consisting of 60% of the objects
nd that the remaining objects were equally distributed among
he remaining clusters. The third level assumed, for each mode,
hat there was one small cluster consisting of 10% of the objects
nd that the remaining objects were equally distributed among
he remaining clusters. The fourth design feature was  the standard
eviation (�) of the normally distributed random error introduced
o the data, which was tested at levels of � = .5, � = 1.0, and � = 2.0.

The four design features, each with three levels, yield a total
f 34 = 81 unique test data configurations. For each configuration,
, K, and the density level were used to establish an n × K matrix
Y) of mode 1 cluster assignments. Similarly, m,  L and the density

evel were used to produce an m × L matrix (Q) of mode 2 clus-
er assignments. A K × L centroid matrix, W,  was  established by
andomly assigning values of the inverse standard normal cumu-
ative distribution function,  ̊ (h/(KL + 1)), for all 1 ≤ h ≤ KL,  to the
tworks 41 (2015) 26–35 29

elements of W.  Finally, elements of an n × m error matrix, E, were
randomly generated from a normal distribution with mean zero
and standard deviation �. The data matrix, X, for the configuration
was then constructed using Y, Q, W,  and E as follows:

X = YWQ′ + E. (3)

The data were generated using MATLAB. Ten replications for
each of the 81 design configurations were generated by changing
the random number generation seed, which resulted in 810 distinct
datasets.

3.2. Implementation of methods

The TMKLMH and TMGA algorithms were programmed as MAT-
LAB m-files and are freely available from the first author. We
acknowledge that the selection of the number of restarts for
TMKLMH and TMGA for our simulation experiment has some
degree of arbitrariness; however, three pragmatic principles were
employed. First, we  considered guidelines from two previous stud-
ies (Brusco and Steinley, 2007b; van Rosmalen et al., 2009), where
500 restarts were used for TMKLMH. Second, we sought to expand
on the number of restarts for TMKLMH, while preserving com-
putational feasibility for the simulation experiment. Third, we
adapted the code so that we could measure the best-found VAF
measure after different levels for the number of restarts. Accord-
ingly, TMKLMH was  implemented using 2000 restarts (four times
the number in previous studies); however, intermediate results
were collected after 10, 100, 500, and 1000 restarts.

Two  different versions of the TMGA algorithm were considered.
The first version, TMGA(a), was designed to measure the benefit
of genetic search above and beyond what can be achieved with
TMKLMH. The parameter settings for TMGA(a) were Cmax = 2000,
C = 100, �max = 2000. Because TMGA(a) uses the same number of
restarts as TMKLMH, its performance must be at least as good
as TMKLMH on each test problem. The second version, TMGA(b),
was designed to be a direct competitor with TMKLMH in terms
of computational effort, with parameter settings of Cmax = 1000,
C = 100, �max = 1000, and � = .05. Accordingly, TMGA(b) is allowed
only one-half the number of restarts as TMKLMH; however, it is also
permitted genetic search iterations that attempt to escape from
local optima via crossover and mutation operations. For TMGA(b),
we collected intermediary results for the genetic search process
after 10, 100, 500, and 1000 search iterations.

The TMKLMH, TMGA(a), and TMGA(b) algorithms were applied
to each of the 810 test problems, and four performance measures
were stored for each algorithm on each problem: (1) the best-found
VAF value, (2) the total computation time, (3) the partition recov-
ery for the mode 1 objects, and (4) the partition recovery for the
mode 2 objects.4 Among these measures, VAF is the most impor-
tant because it is the criterion that the methods seek to optimize.
Partition recovery, which was  measured using the adjusted Rand
index (ARI, Hubert and Arabie, 1985), is also an important criterion
because it helps to determine whether differences in the algorithms
translate into salient differences in their recovery of the partitions
of row and column objects based on the data generation process.
Throughout the remainder of this paper, we  refer to the partitions
4 The TMKLMH and TMGA algorithms were written as MATLAB m-files, and the
simulation study was  completed using MATLAB version R2012b(8.0.0.783). The
hardware platform was a microcomputer using a 3.4 GHz  Intel Core i7-2600 proces-
sor  with 8.0 GB of RAM. All of the MATLAB files for replicating the simulation study
are available from the first author on request.
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f 1 for perfect agreement, whereas values near zero suggest only
hance agreement.5

.3. Experimental results

Table 2 provides a summary of the average performance meas-
res for the planted partitions and each of the three methods
cross all 810 test problems. The average computation times
or TMKLMH and TMGA(b) were roughly 50 s, whereas TMGA(a)
equired approximately twice the amount of computation time as
ts competitors. The TMGA(a) algorithm yielded the best average
AF value of .43616, followed by TMGA(b) at .43604 and TMKLMH
t .43579. The average VAF for the planted partitions was  .43095.
enoting VAF* as the best VAF value across the three methods for
ny given test problem, TMGA(a), TMGA(b), and TMKLMH matched
AF* for 95.6%, 85.2%, and 77.7% of the test problems, respec-
ively. The planted partitions matched VAF* for 45.2% of the test
roblems.

Turning to head-to-head comparisons, TMGA(a) produced a bet-
er objective function than TMKLMH for 173 (21.4%) of the 810 test
roblems. As noted above, TMGA(a) cannot perform worse than
MKLMH because TMKLMH is, effectively, used to establish the ini-
ial population for TMGA(a). Our results support the finding of van
osmalen et al. (2009) that TMKLMH is an excellent performer, but
he genetic algorithm was  able to improve its result in more than
ne-fifth of the test instances. The results in Table 2 also reveal
hat improvement afforded in the VAF by TMGA(a) translated into

odest improvement in the recovery of the row and column clus-
er structures. The average ARI values for the mode 1 objects for
MKLMH and TMGA(a) were .828 and .836, respectively. Similarly,
he average ARI values for the mode 2 objects for TMKLMH and
MGA(a) were .865 and .868, respectively.

The TMGA(b) implementation affords a more equitable compar-
son to TMKLMH because of their comparable computation times.
cross the 810 test problems, the two algorithms obtained the
ame VAF in 633 (78.1%) instances, TMGA(b) yielded a better VAF
or 153 (18.9%) problems, and TMKLMH provided a better VAF for
4 (3.0%) problems. Both a t-test on mean VAF performance and

 nonparametric sign test indicate that TMGA(b) outperformed
MKLMH (p-value < .01). The TMGA(b) algorithm yielded a larger
RI for mode 1 objects than TMKLMH (.836 vs. .828), but a slightly

ower average ARI for mode 2 objects (.864 vs. .865).
There are two important caveats regarding the relationship

etween the VAF and ARI results in Table 2. The first is that mean-
ngfulness of the ARI values is predicated on the quality of the VAF
ssociated with the planted partitions. We  elaborate on this issue
hen discussing the detailed results for the design feature lev-

ls below. The second caveat pertains to the fact that small VAF
ifferences do not always imply small ARI differences. The VAF
verages range from .43579 to .43616, the mode 1 ARI averages
ange from .828 to .836, and the mode 2 ARI averages range from
864 to .868. These narrow ranges for the averages can lead to the
onclusion that small VAF differences translate to small ARI dif-
erences; however, closer inspection revealed this is not always
he case. Across the 810 test problems, the maximum VAF differ-
nce between TMGA(a) and TMKLMH was only .00983, and most
bserved differences were appreciably smaller. Contrastingly, the
aximum mode 1 and mode 2 ARI differences between TMGA(a)
nd TMKLMH were much greater at .449 and .414, respectively.
oreover, there were 33 test problems where the mode 1 ARI dif-

erence between the TMGA(a) and TMKLMH solution was  .10 or

5 More precisely, for two partitions: (i) ARI ≥ 0.9 indicates excellent agreements;
ii)  0.9 > ARI ≥ 0.8 suggests a good agreement; (iii) 0.8 > ARI ≥ 0.65 can be viewed as

 moderate agreement; and (iv) ARI ≤ 0.65 indicates poor agreements.
tworks 41 (2015) 26–35

greater, as well 27 instances where the mode 2 ARI difference was
.20 or greater. The key point associated with these results is that
it would be a mistake to assume that small differences in the VAF
values always translate into trivial differences in the mode 1 and
mode 2 partitions.

Table 3 provides average VAF results, for each of the three meth-
ods and the planted partitions corresponding to the data generation
process, for different levels of each of the four design features. Sim-
ilarly, Table 4 offers the percentage of test problems for which the
best-found VAF (VAF*) was  achieved. The most important aspects
of these tables are: (1) the TMGA(b) algorithm provided an average
VAF that was equal to or larger than the average VAF of TMKLMH at
all levels of all design features, (2) the TMGA(b) algorithm obtained
VAF* for a greater percentage of test problems than TMKLMH at all
levels of all design features, (3) the TMGA(a) algorithm provided
an average VAF that was  equal to or larger than the average VAF of
TMGA(b) at all levels of all design features, (4) the TMGA(a) algo-
rithm obtained VAF* for a greater percentage of test problems than
TMGA(b) at all levels of all design features, and (5) the planted par-
tition produced excellent VAF values for the � = .5 design feature
level; however, the algorithms generally yielded better VAF’s than
the planted partitions at the higher error level conditions of � = 1.0
and � = 2.0.

All three methods yielded exceptional performance when there
were K = L = 3 clusters of mode 1 and mode 2 objects. At this design
feature level, each method yielded an average VAF of approximately
.39098, whereas the average VAF for the planted partitions was
.38764. The percentages of best-found VAF values at K = L = 3 for the
planted partitions, TMKLMH, TMGA(a), and TMGA(b) were 51.1%,
97.4%, 99.6%, and 98.9%, respectively. Contrastingly, at K = L = 7 clus-
ters, there was  much greater disparity in the performance of the
algorithms, where the average VAF values for the planted partitions,
TMKLMH, TMGA(a), and TMGA(b) were .46713, .47300, .47399, and
.47369, respectively. Likewise, the percentage of best-found VAF
values at K = L = 7 for the planted partitions, TMKLMH, TMGA(a),
and TMGA(b) were 43.7%, 56.7%, 91.5%, and 70.7%, respectively.

All three methods also yielded good performances when there
was an equal number of objects in each cluster. At this design
feature level, the average VAF values for the planted partition,
TMKLMH, TMGA(a), and TMGA(b) were .44454, .44820, .44838, and
.44832, respectively, and the percentage of best-found VAF val-
ues for TMKLMH, TMGA(a), and TMGA(b) were 87.8%, 99.3%, and
90.7%, respectively. Contrastingly, there was  much greater disparity
among the methods when there was  one small cluster containing
10% of the objects, with an equal distribution of objects among the
remaining clusters. At the 10% density level, the average VAF values
for the planted partitions, TMKLMH, TMGA(a), and TMGA(b) were
.41253, .41950, .42202, and .41996, respectively, and the percent-
age of best-found VAF values for the planted partitions, TMKLMH,
TMGA(a), and TMGA(b) were 41.1%, 60.4%, 88.9%, and 76.3%, respec-
tively.

All three methods performed well at the low-error design fea-
ture level of � = .5, where the average VAF values for the planted
partitions, TMKLMH, TMGA(a), and TMGA(b) were .72996, .72966,
.72990, and .72976, respectively, and the percentage of best-found
VAF values for the planted partition, TMKLMH, TMGA(a), and
TMGA(b) were 93.7%, 91.5%, 97.0%, and 95.6%, respectively. Clearly,
at this low-error setting, the planted partitions reflect the strong
cluster structure, and the algorithms often match, but seldom sur-
pass, the VAF of the planted partitions. We  probed more deeply into
the results for the low-error setting, and discovered that all of the
instances where TMGA(a) failed to match the VAF of the planted

partitions occurred at the 10% density condition. This reinforces
the finding observed in the preceding paragraph, which suggests
that the 10% density condition is especially challenging for these
algorithms.
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Table  2
Simulation results—overall performance summary.

Planted TMKLMH TMGA(a) TMGA(b)

Average computation time (s) – 50 102 51
Average VAF .43095 .43579 .43616 .43604
Number of best-found VAF’s out of 810 possible 366 629 774 697
Percentage of best-found VAF’s out of 810 possible 45.2 77.7 95.6 85.2
.  . ..  . .Number of VAF’s better than Planted – 438 443 441
Number of VAF’s better than TMKLMH 29 – 173 153
Number of VAF’s better than TMGA(a) 9 0 – 30
Number of VAF’s better than TMGA(b) 16 24 113 –
Average ARI (mode 1 objects) – .828 .836 .836
Average ARI (mode 2 objects) – .865 .868 .864

Table 3
Simulation results—average VAF results by design feature levels.

Design feature Level Planted TMKLMH TMGA(a) TMGA(b)

Number of objects n = m = 60 .43163 .43705 .43752 .43741
n = m = 120 .43085 .43155 .43169 .43152
n  = 150, m = 30 .43037 .43876 .43926 .43918

Number of clusters K = L = 3 .38764 .39098 .39098 .39098
K  = L = 5 .43807 .44339 .44351 .44345
K  = L = 7 .46713 .47300 .47399 .47369

Cluster density Even distribution .44454 .44820 .44838 .44832
60%  in largest .43578 .43967 .43988 .43984
10%  in smallest .41253 .41950 .42022 .41996

Error  level � = .5 .72996 .72966 .72990 .72976
�  = 1.0 .41035 .41166 .41181 .41178
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�  = 2.0 .1525

At the � = 2.0 level of error, the average VAF values for the planted
artition, TMKLMH, TMGA(a), and TMGA(b) were .15254, .16604,

16677, and .16658, respectively, and the percentage of best-found
AF values for the planted partitions, TMKLMH, TMGA(a), and
MGA(b) were .7%, 53.0%, 91.5%, and 64.8%, respectively. At this
igh-error setting, two observations are evident: (i) it is clear that
ll of the algorithms generally produce a better VAF than the planted
artitions, and (ii) there is greater variability in performance among
he algorithms. Although the average VAF for the planted partitions
.15254) is not seriously lower than that of TMGA(a) (.16677) and
he other two algorithms, the small percentage of best-found VAF
alues for the planted partitions is of concern when interpreting

RI values. To illustrate, we found that the average ARI values for
ll three algorithms are in the .98 to .99 range for the � = .5 error
evel, and in the .92 to .95 range for � = 1.0. This is excellent recovery
nd suggests that the planted partitions are a reasonable indicator

able 4
imulation results–Percentage of best-found VAF results by design feature levels.

Design Feature Level Planted 

Number of objects n = m = 60 44.1 

n  = m = 120 59.6 

n  = 150, m = 30 31.9 

Number of clusters K = L = 3 51.1 

K  = L = 5 40.7 

K  = L = 7 43.7 

Cluster density Even distribution 47.8 

60%  in largest 46.7 

10%  in smallest 41.1 

Error  level � = .5 93.7 

�  = 1.0 41.1 

�  = 2.0 .7 
.16604 .16677 .16658

of underlying cluster structure. However, at the � = 2.0 error level,
the average ARI values for all three algorithms are in the .59 to
.66 range, which leads to the conclusion that recovery of cluster
structure cannot legitimately be measured at this highest level of
error.

3.4. Evolution of VAF as a function of restarts and search
iterations

To complete the analysis of the simulation results, we examine
how the solution quality of the THKLMH and TMGA(b) algorithms
evolves over time. Concretely, using the number of restarts as a

surrogate for time, Table 5 reports the average VAF and percentage
of best-found VAF’s for TMKLMH at 10, 100, 500, 1000, and 2000
restarts. The results for the TMGA(b) heuristic at 1000 restarts and
zero genetic search iterations are equivalent to those of TMKLMH

TMKLMH TMGA(a) TMGA(b)

74.8 95.6 82.6
87.4 96.7 90.4
70.7 94.4 82.6

97.4 99.6 98.9
78.9 95.6 85.9
56.7 91.5 70.7

87.8 99.3 90.7
84.8 98.5 88.5
60.4 88.9 76.3

91.5 97.0 95.6
88.5 98.1 95.2
53.0 91.5 64.8
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Table 5
Simulation results–Evolution of VAF improvement for TMKLMH and TMGA(b).

TMKLMH Results TMGA(b) Results

Average VAF Percentage of best-found VAF’s Average VAF Percentage of best-found VAF’s

10 Restarts .42886 41.98 – –
100  Restarts .43428 64.57 – –
500  Restarts .43538 71.98 – –
1000  Restarts .43556 74.32 – –
2000  Restarts .43579 77.65 – –
1000  Restarts

0 genetic search iterations – – .43556 74.32
10  genetic search iterations – – .43570 75.93
100  genetic search iterations – – .43585 78.77
500  genetic search iterations – – .43596 81.11
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are the identifiers ‘complete’ (if the block contains mostly ones) or
‘null’ (if the block contains mostly zeros). A comprehensive treat-
ment of blockmodeling is provided by Doreian et al. (2005), and
1000  genetic search iterations – – 

All  genetic search iterations – – 

t 1000 restarts, thus providing a balance point for the two  algo-
ithms. Table 5 also reports the performance measures (average
AF and percentage of best-found VAF’s) for TMGA(b) after 10, 100,
00, 1000, and ‘all’ of the genetic search iterations employed by
he algorithm. The ‘all’ category reflects that the total number of
enetic search iterations is not deterministic because the termi-
ation criterion is based on �max = 1000, which is the number of
enetic search iterations with no improvement in the objective func-
ion. Together, the results in Table 5 provide information regarding
i) how TMKLMH solution quality evolves as a function of the num-
er of restarts, and (ii) the evolution of the improvement in an initial
olution provided by TMKLMH as a function of the genetic search
terations employed by TMGA(b).

The TMKLMH heuristic performed reasonably well with only
0 restarts, with an average VAF of .42886 and realization of the
est-found VAF for nearly 42% of the test problems. Increasing
he number of restarts to 100 only improved the average VAF by
pproximately .006; however, the number of best-found VAF val-
es increased to roughly 65%. Using 500 restarts, as was  reported
y van Rosmalen et al. (2009), improved average VAF to .43538 and
early 72% of the best-found VAF values were obtained. This finding
uggests that the 500 restarts used in this earlier study provided a
easonable estimate of average VAF for TMKLMH because increas-
ng the number of restarts to 2000 only improved average VAF by
00041 to .43579. At 1000 restarts, TMKLMH yielded an average VAF
f .43556 and matched the best-found VAF approximately 74% of
he time. Notice that these results are identical to those reported for
MGA(b) with 0 genetic search iterations because TMKLMH with
000 restarts is the starting point for TMGA(b).

The key result in Table 5 is that TMGA(b) using 1000 restarts
nd only 100 genetic search iterations outperformed TMKLMH with
000 restarts with respect to both average VAF (.43585 vs. .43579)
nd percentage of best-found VAF values (78.77% vs. 77.65%). This
s important because it clearly reveals that the modest computa-
ional investment of 100 genetic search iterations using TMGA(b)
roduced better results than the more demanding burden of 1000
dditional restarts (from 1000 to 2000) for TMKLMH. Moreover,
00 genetic search operations for TMGA(b), which is still modest

n comparison to 2000 restarts for TMKLMH, yielded improve-
ent of average VAF to .43596 and matched the best-found VAF for

pproximately 81% of the test problems. Using 1000 genetic search
terations for TMGA(b) produced an average VAF of .43601 and
btained approximately 84% of the best-found VAF’s. Once again,
t is critical to stress that applying TMGA(b) with 1000 (random)
estarts plus 1000 genetic search iterations will require less com-

utation time than using TMKLMH with 2000 (random) restarts
ecause the starting solutions in the genetic search process are
uch better than random initial solutions and, accordingly, require

ess time to refine to a local optimum.
.43601 83.58

.43604 85.19

4. An example—The Turning Point Project

4.1. The two-mode network

The computational results in the previous section reveal that
TMGA generally outperforms TMKLMH with respect to the VAF
criterion function. Although the VAF criterion function differences
are typically quite small, as we noted above, this should not be
misinterpreted as evidence that the partition differences are nec-
essarily trivial. To illustrate this point, we consider an application
of TMKLMP to the blockmodeling of social network data related
to the Turning Point Project (TPP).6 The two modes consist of
n = 108 organizations that each signed one or more of m = 25 rad-
ical, environmental activist-oriented7 advertisements in the New
York Times (NYT) during 1999–2000. Different sets of organizations
signed different advertisements—but with considerable overlaps
for some signing organizations. Accordingly, the data are in the
form of a 108 × 25 two-mode binary matrix (X) that corresponds to
ties between organizations and full one-page advertisements in the
NYT that they signed. The elements of X are xij = 1 if organization
i signed advertisement j and xij = 0 did not sign the advertisement.
The total number of organizations signing a specific advertisement
ranged from 16 to 28. The number of signatures from organiza-
tions ranged from 1 (18 organizations) to 22 (1 organization). There
was great variation in the overall participation of organizations.
Going into the clustering analysis, our expectation was  that most
organizations signing multiple advertisements were more likely to
concentrate them into specific substantive domains.

The application of TMKLMP methods to the binary network
matrix, X, ought to produce partitions of the organizations and
advertisements such that the elements of the submatrices pro-
duced by crossing one of the organization clusters with one of the
advertisement clusters is either mostly 0s or mostly 1s. In the ver-
nacular of social network analysis, such crossings are called blocks,
and a block of all (or mostly) zeros is called a null block, whereas
a block of all (or mostly) ones is called a complete block. There-
fore, in this particular context, the TMKLMP methods are used as
a ‘two-mode blockmodeling’ tool that seeks to establish a K × L
‘image matrix’ that is a parsimonious representation of the much
larger n × m network matrix. The elements of the image matrix
6 These data were collected and assembled by the second author from whom they
are available. A fuller description of the data is provided by Brusco et al. (2013c).

7 Every advertisement finished with information about, and calls for, action to be
taken by readers.
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Table  6
The VAF results for the Turning Point Project network.

L = 3 L = 4 L = 5 L = 6

K = 3 TMKLMH .27286858 .28313530 .28934383 .29271834
TMGA .27286858 .28313530 .28934383 .29271834

K  = 4 TMKLMH .32567962 .34416520 .35606338 .35888974
TMGA .32567962 .34416520 .35606338 .35897234

K  = 5 TMKLMH .36614905 .39720306 .40837899 .41296559
TMGA .36614905 .39720306 .40837899 .41296559

K  = 6 TMKLMH .38758827 .43958942 .45569737 .45957118
TMGA .38758827 .43958942 .45569737 .46069277

K  = 7 TMKLMH  .39957810 .46123685 .50177582 .50748522
TMGA .39964065 .46123685 .50177582 .50748522

K  = 8 TMKLMH .40983005 .47620763 .52631504 .53354713
TMGA .41102357 .47620763 .52631504 .53354713

K  = 9 TMKLMH .41949578 .48702308 .54269325 .55097730
TMGA .41969739 .48765685 .54269893 .55148845

K  = 10 TMKLMH .42355529 .49625425 .55587062 .56696906
TMGA .42703290 .49677179 .55616637 .56748022

Note—The 12 instances where TMGA yielded a better VAF than TMKLMH are highlighted in bold.

Table 7
Image matrix for the Turning Point Project network.

TMGA TMKLMH GE ads EG ads IA ads TM ads EC ads

n1 = 3 n1 = 3 Complete Complete Complete Complete Null
n2 = 4 n2 = 4 Complete Complete Null Null Complete
n3 = 11 n3 = 11 Complete Null Complete Null Null
n4 = 8 n4 = 8 Complete Null Null Null Null
n5 = 10 n5 = 10 Null Complete Null Null Null
n6 = 13 n6 = 10 Null Null Complete Null Null
n7 = 10 n7 = 18 Null Null Null Complete Null
n8 = 21 n8 = 21 Null Null Null Null Complete
n9 = 28 n9 = 23 Null Null Null Null Null
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ote—The first two  columns contain the number of organizations in each of the 9 cl
olumns indicate that the TMGA and TMKLMH cluster memberships were the same
hich was  the same for the TMGA and TMKLMH partitions.

ontributions related to two-mode blockmodeling are found in
orgatti and Everett (1997), Brusco et al. (2013a, 2013b), Brusco and
teinley (2007b, 2011), Doreian et al. (2004), Doreian et al. (2013)
nd Everett and Borgatti (2013).

.2. Results and analysis

The TMKLMH and TMGA (implementation TMGA(b)) algorithms
ere applied to the TPP network for all 32 combinations of clus-

ers on the intervals of 3 ≤ K ≤ 10 and 3 ≤ L ≤ 6. The VAF results are
eported in Table 6. Across the 32 combinations, the TMKLMH and
MGA algorithms produced the same VAF values for 20 combina-
ions, whereas the TMGA algorithm yielded a better VAF in the
emaining 12 instances, which are highlighted in bold in the table.
ight of the 12 instances where TMGA provided a solution with

 better VAF than TMKLMH corresponded to the K = 9 and K = 10
onditions, where TMGA was better at each of the four settings for
.8

An inspection of the VAF values in Table 6 reveals that L = 5 is a

onsistently good choice for the number of clusters for the adver-
isements. For most values of K, there was a marked improvement in
AF when going from L = 4 to L = 5 clusters, but very little additional

mprovement when going from L = 5 to L = 6 clusters. A selection

8 The fact that the superiority of TMGA increases for a larger number of clusters is
n  important result, which is consistent with the findings for genetic algorithms in
he  one-mode K-means context (Brusco and Steinley, 2007a). Moreover, it suggests
hat an expansion of the test conditions in van Rosmalen et al. (2009) to include
/L combinations greater than K = L = 7 might lead to greater discernment among
ompetitive methods.
 for the TMGA and TMKLMH partitions, respectively. Values in bold in the first two
emaining columns identify the complete and null blocks for the 9 × 5 image matrix,

of L = 5 clusters is also conceptually appealing9 because the clus-
ter memberships consistently corresponded to five meaningful
categories defined by the organizers of the TPP, which provide
insight into the natural or logical partitioning of the advertisements
into underlying themes. The categories were: Ecological catastro-
phe (EC); Economic globalization (EG); Genetic Engineering (GE);
Industrial agriculture (IA) and Techno-mania (TM).

A selection of K = 9 clusters for the organizations was  made based
on the modesty of the improvement in VAF associated with increas-
ing K to 10, as well as the interpretability of the solution. The
difference in the VAF values for TMKLMH and TMGA at K = 9 and
L = 5 clusters was  extremely modest (VAF = .54269325 for TMKLMH
vs. VAF = .54269893 for TMGA). Despite this seemingly paltry differ-
ence of .00000568 in the VAF values, there were some noteworthy
differences in the partitions of the organizations for the two meth-
ods. As shown in the first two  columns of Table 7, six of the nine
clusters of organizations were the same for the TMKLMH and TMGA
methods; however, three were appreciably different in size. As
a formal measure of agreement, we  computed an adjusted Rand
index of .766 between the TMKLMH and TMGA partitions for the
organizations. Based on the standards in Steinley (2004), a value
of .766 is at the high end of the range for ‘fair’ agreement between
the partitions. Thus, despite the modest difference in VAF associated

with TMKLMH and TMGA, their partitions of the organizations have
some marked differences.

9 That the clustering of the columns corresponds exactly with the five substance
areas of the advertisements, despite many organizations signing advertisements in
multiple domains, adds to validity of the results from using the methods described
here.
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Although there are some salient differences in some of the orga-
ization clusters associated with the TMKLMH and TMGA solutions,
oth methods produced the same image matrix, which is displayed

n the last five columns of Table 7. From a blockmodeling per-
pective, identifying the correct blockmodel is crucial and both
ethods agree on the column clusters. Each algorithm uncovered

ne small cluster (cluster 1) of three organizations that were heavy
igners of advertisements in four of the five categories, with the
C ads being the exception. Even so, one of these three organiza-
ions, the Earth Island Institute, signed in all five categories (22
eparate advertisements in total), including all of the EC ads. The
ther dominant organizational signer was the International Forum
n Globalization, which also signed in all five areas. Both algorithms
lso extracted a small cluster (cluster 2) of four organizations that
ere heavy signers of ads in each of the GE, EG, and EC categories,

s well as a cluster (cluster 3) of 10 organizations that were heavy
igners in both the GE and IA categories. The TMKLMH and TMGA
lgorithms also produced identical clusters of organizations that
ere heavy signers in only one category (GE, cluster 4), (EG, cluster

), and EC (cluster 8). This was to be expected as some of the orga-
izations had core interests that led them to sign in a single area.
his was detected using both methods.

The disparity between the TMKLMH and TMGA solution
ccurred in clusters 6, 7, and 9. Cluster 6 corresponded to orga-
izations that were heavy signers of only the IA ads. Whereas
he TMGA solution contained 13 organizations in cluster 6, the
MKLMH solution contained only 10. Contrastingly, the TMKLMH
olution placed 18 organizations in cluster 7, which corresponded
o heavy signers of only the TM ads, whereas the TMGA solution
ad only 10 organizations in this cluster. The reported ARI value is
riven by the differences in these three clusters of organizations.
gain from a blockmodeling perspective, differences in row clus-

er memberships are problematic with regard to interpreting the
tances of organizations. However, the cores of these clusters show
onsiderable consistency with the differences being due to those
rganizations signing much fewer advertisements.

. Summary and extensions

This paper has two primary purposes. First, it brings to light
n important, yet understudied, extension of minimum sum-of-
quares clustering. Potential applications of the TMKLMP include
but are not limited to) the analysis of gene expression data, the for-

ation of manufacturing cells, the investigation of buyer/supplier
elationships in a supply chain, the study of vocabulary used in a
et of documents, the participation of organizations in projects or
olitical activities, and the social behavior of individuals in social
etworks. Much of the blockmodeling partitioning has been applied
o binary networks. The methods introduced here can extend block-

odeling to tackle valued networks. Another approach in this
rea is provided by Žiberna (2007), particularly with homogeneity
lockmodeling. Second, a new real-coded genetic algorithm for the
MKLMP has been introduced and shown to perform well relative
o a multistart implementation of two-mode KL-means clustering
i.e., TMKLMH) that been purported as the best available heuristic
rocedure for the problem (van Rosmalen et al., 2009). Although
ur findings reinforce those of van Rosmalen et al. (2009) in the
ense that TMKLMH generally performed well, the genetic algo-
ithm was able to improve the TMKLMH result in about one-fifth
f the test problems. Moreover, an implementation of the genetic
lgorithm that was comparable to TMKLMH with respect to com-

utation time provides statistically superior results in terms of
AF. An examination of the evolution of VAF across different lev-
ls of restarts and genetic search iterations further exemplified the
fficacy of the genetic algorithm.
tworks 41 (2015) 26–35

Extensions to this research can be divided into three areas.
The first area centers on the development of better methods for
the TMKLMP. This might include the design of other heuristic
approaches and initialization procedures. For example, it is pos-
sible that slightly modified initialization procedures could lead
to better performance, particularly for the difficult 10% density
problem instances (see Brusco et al., 2013a). There is also the poten-
tial for progress in the area of exact approaches (see Brusco and
Doreian, in press). The second area focuses on data preparation.
In applications for real-valued networks (e.g., journal co-citation
data), it might be advisable to transform the raw matrix elements
prior to implementing TMKLMP; however, the precise nature of
such transformations remains an open research question. The third
area for future research involves comparisons of different objective
functions for heterogeneity blockmodeling. Although the sum-of-
squares criterion has a good pedigree in the statistical literature, it
is not necessarily the best approach in all circumstances.
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