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The two-mode KL-means partitioning (TMKLMP) problem has a number of important applications in the
social and physical sciences. For example, the intra-block variability measure associated with TMKLMP
underscores its direct relevance to two-mode homogeneity blockmodeling of binary and real-valued
social networks. We present areal-coded genetic algorithm for obtaining TMKLMP solutions. A simulation
study showed that the new algorithm compares favorably to a multistart implementation of a two-
mode KL-means heuristic, which is recognized as a top-performing method for TMKLMP. The merit of

the proposed method is demonstrated via an application to the blockmodeling of social network data
associated with signing of environmental advertisements in the New York Times as a part of the Turning

Point Project.
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1. Introduction

Consider a typical data matrix where the rows of the matrix
correspond to n respondents and the columns correspond to m vari-
ables on which those respondents are measured. The data consist
of measurements for each respondent on each variable. A com-
mon clustering approach for such data is to establish a measure
of proximity (e.g., squared Euclidean distance) between each pair
of respondents using their respective variable measurements and,
subsequently, cluster the respondents based on those proximity
measures. This is a one-mode clustering problem because only the
respondents are clustered. The information in the variables is col-
lapsed to establish the proximity measures for the respondents, but
the variables are not clustered. A two-mode clustering problem is
one that would require the establishment of a clustering solution
for both the respondents and the variables.!

* Corresponding author at: Department of Marketing College of Business, Florida
State University, 821 Academic Way, Tallahassee, FL 32306-1110, United States.
E-mail addresses: mbrusco@fsu.edu, mbrusco@cob.fsu.edu (M. Brusco),
pitpat@pitt.edu (P. Doreian).
1 More generally, two-mode clustering requires the assignment of two distinct
sets of objects to clusters. Each set is a ‘mode’ of the data, and the number of clusters
for each mode need not be the same.
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Applications of two-mode clustering abound in the blockmodel-
ing of social network data (Borgatti and Everett, 1997; Brusco, 2011;
Brusco et al., 2013a, 2013b, 2013c; Brusco and Steinley, 2007b,
2011; Doreian et al., 2004, 2005, 2013; Everett and Borgatti, 2013;
Latapy et al., 2008). Two-mode clustering problems also arise in
several other scientific domains, such as the clustering of gene
expression data in the biological sciences (IMadeira and Oliveira,
2004; Prelic et al., 2006; van Uitert et al., 2008) and part-machine
grouping problems in industrial engineering (Selim et al., 1998).
The many different formulations of two-mode clustering problems
contrast in ways largely based on the nature of the application.
Although the complexity of two-mode clustering is apt to vary
across different objective criteria and constraints, Madeira and
Oliveira (2004, p. 26) observed “...almost all interesting variants
of this problem are NP-complete.” Excellent surveys of two-mode
clustering formulations and algorithms are provided by Madeira
and Oliveira (2004) and van Mechelen et al. (2004).

Here, we focus on a two-mode generalization of minimum
sum-of-squares clustering, which is a one-mode problem com-
monly known as K-means clustering (Steinhaus, 1956; Forgy,
1965; MacQueen, 1967). Although less well-known, there is a
two-mode extension of K-means clustering that requires the simul-
taneous partitioning of two distinct sets of objects (Baier et al.,
1997; Brusco and Doreian, in press; Brusco and Steinley, 2007b;
Gaul and Schader, 1996; van Rosmalen et al., 2009; Vichi, 2001).
Throughout the remainder of this paper, we focus on this particular
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generalization of K-means clustering, which we hereafter refer to
as the two-mode KL-means partitioning (TMKLMP) problem.?

The objective criterion of TMKLMP is a homogeneity measure
that is defined as the sum-of-squared deviations of matrix ele-
ments from the means associated with blocks (submatrices) of
elements formed by the intersection of the clusters for the two sets
of objects. This type of intra-block variance measure for two-mode
clustering dates back (at least) to the work of Hartigan (1972), with
subsequent important contributions in the statistical literature by
DeSarbo (1982) and Both and Gaul (1985, 1987). Within the context
of social network analysis, it has been recognized that intra-block
variance homogeneity measures can be used for the blockmodeling
of both real-valued and binary networks based on structural equiv-
alence (Borgatti and Everett, 1992; Brusco and Steinley, 2007b;
Ziberna, 2007). Although well-suited for structural equivalence,
simulation results reported by Ziberna (2009) reveal that intra-
block variance measures also perform well for blockmodeling based
on regular equivalence.

Since the mid-1990s, a number of heuristic algorithms have
been proposed for TMKLMP. These algorithms include alternat-
ing least squares (Gaul and Schader, 1996), two-mode K-means
(Baier et al., 1997; Vichi, 2001), simulated annealing (Trejos and
Castillo, 2000), genetic algorithms (Hansohm, 2002), tabu search
(Castillo and Trejos, 2002), variable neighborhood search (Brusco
and Steinley, 2007b) and fuzzy steps (van Rosmalen et al., 2009).
More recently, an exact solution procedure was devised by Brusco
and Doreian (in press). However, its application is limited to small
matrices (20 or fewer row/column objects).

The most comprehensive comparison of methods to date was
performed by van Rosmalen et al. (2009, p. 179), who concluded
“...the best average performance is obtained using the two-mode
K-means method...”. The exceptional performance of two-mode
K-means clustering in the van Rosmalen et al. (2009) TMKLMP
study is concordant with results for one-mode K-means clustering
in a study conducted by Brusco and Steinley (2007a). For example,
both comparative studies showed the superiority of K-means to
implementations of tabu search and simulated annealing. However,
Brusco and Steinley (2007a) also found that a genetic algorithm
performed slightly better than K-means. In light of this finding, it
seems reasonable to contemplate the design of a genetic algorithm
for the TMKLMP and a comparison of its performance to two-mode
K-means clustering. An earlier investigation of this possibility was
conducted by Hansohm (2002), who proposed an integer-coded
genetic algorithm for TMKLMP. The integer coding corresponds to
the fact that the chromosomes in the population were vectors of
cluster assignments for the two modes, and each gene of the chro-
mosome was an integer value indicating the cluster to which each
object was assigned. As noted by van Rosmalen et al. (2009), the
integer-coded genetic algorithm was much less effective relative
to its performance in the one-mode context.

Here, we present a real-coded genetic algorithm for the TMKLMP
wherein the chromosomes of the algorithm are the ‘real-valued’
centroids of solutions to the TMKLMP. Our selection of this
approach is based on three notions: (1) the genetic algorithm that
performed so well in Brusco and Steinley’s (2007a) one-mode K-
means comparative study was a real-coded genetic algorithm; (2)
with the real-coding approach, the chromosome vectors are much
shorter in length and cluster center information is better preserved
in the crossover operation that produces ‘offspring’ chromosomes

2 Some authors (Brusco and Steinley, 2007b; van Rosmalen et al. 2009) have
employed the term ‘two-mode K-means’ to refer to the same problem. We adopt the
term ‘two-mode KL-means’ recently used by Brusco and Doreian (in press) which
explicitly reflects the fact that the number of clusters for the first mode (K) need not
be the same as the number of clusters for the second mode (L).

from splicing two parent chromosomes; and (3) the two-mode K-
means clustering algorithm can efficiently and effectively refine the
offspring chromosome.

Section 2 provides a formal presentation of the TMKLMP and
describes the real-coded genetic algorithm for its solution. Compu-
tational results for the proposed method are reported in Section 3.
An empirical application related to two-mode homogeneity block-
modeling is presented in Section 4. The paper concludes in Section
5 with a summary and a discussion of possible extensions.

2. Two-mode KL-means partitioning
2.1. Formulation

The notation for the presentation of TMKLMP is provided in
Table 1. The optimization problem associated with TMKLMP (Baier
et al., 1997; Brusco and Steinley, 2007b; Gaul and Schader, 1996;
Hansohm, 2002; Trejos and Castillo, 2000; van Rosmalen et al.,
2009; Vichi, 2001)is to find the partitions 7 and w that minimize the
total sum-of-squared error variation® across all KL blocks, which is
formally stated as follows:

K L
M%m:ﬂn,w):Zkaz. (1)

k=1 I=1

The minimization of the total sum-of-squared error variation
across the blocks is equivalent to maximizing the total variation-
accounted-for (VAF) in X:

VAF = vaf (77, @) = (”_f(+“’)) 2)

The total number of partitions in /7 and §2 are Stirling numbers
of the second kind (Clapham, 1996). Since any partition of the mode
1 objects can be matched with any partition of the mode 2 objects,
the solution space for TMKLMP is the product of these two Stirling
numbers. Essentially, the implications of this result are that the
solution space grows exponentially as a function of n and m.

2.2. A two-mode KL-means heuristic

A straightforward heuristic strategy for TMKLMP is based on the
extension of K-means clustering heuristics (Forgy, 1965; Steinhaus,
1956). A two-mode adaptation of K-means clustering is described
by Baier et al. (1997) as well as several other sources (Vichi,
2001; Brusco and Steinley, 2007b; van Rosmalen et al., 2009). The
two-mode KL-means heuristic (TMKLMH) consists of the following
steps:

Step TMKLMHO. Construct random initial partitions, 7 and w, for
the mode 1 and mode 2 object sets respectively, and compute
fr=flm,w).
Step TMKLMH1. Reassignment of Mode 1 Objects.
Step TMKLMH1a: Compute X, forall 1 <k<Kand 1 <I<L.

L - .
Step TMKLMH1b. Compute a;, = Zl:]ZjET’(Xij — %) 1<i<n
and 1 <k<K.
Step TMKLMH1c. Update by settingi € S.: o, = rr}lin {aip ), forall

1<h<K

l<i<n.

Step TMKLMH1d. If S, =2 for any k (1 <k<K), then set i’ €Sy:

oy = max{ mhin {oejp}}. Set ay, =0 and repeat this step as needed
1<i<n 1<h=<K

to ensure no empty clusters.

3 The use of sum-of-squares error variation in two-mode clustering was originally
suggested by Hartigan (1972), who sought to minimize this criterion using a divisive
hierarchical algorithm for splitting the dataset into a pre-specified number of blocks.
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Table 1
Notation.

n=the number of objects for mode 1 (the rows);

m=the number of objects for mode 2 (the columns);

X=a i two-mode matrix;

K=the number of clusters for mode 1;

L=the number of clusters for mode 2;

IT = the set of all partitions of the mode 1 objects into K clusters;

7 =a partition, (7 = {Sy,...,Sk}) € I, of the mode 1 objects into K clusters, where S; is the set of objects assigned to cluster k and n, = |Si | is the number of objects in

S, forall1 <k<K;
§2=the set of all partitions of the mode 2 objects into L clusters;

w=a partition, (w={T1,...,T.}) € §2, of the mode 2 objects into L clusters, where T; is the set of objects assigned to cluster [ and m; = |T;| is the number of objects in Tj,

forall 1 <I<L;
X=the grand mean of X, x = Zi] Zjnilxij/nm;

2
v=the total (sum-of-squares) variation in X, v = ZL Zjnil(xij —X)

Xy =the mean of the elements in the block (") formed by the mode 1 objects in cluster S, and the mode 2 objects in cluster Tj, X, = Zissk Zjalx,-j/nkm,,

forall1<k<Kand1<I<L;

vy = the intra-block sum-of-squared error variation in the block formed by the mode 1 objects in cluster S, and the mode 2 objects in cluster T;,

2
=> > Xii — X
Vi o5, jen( i —Xu)”,

forall1<k<Kand1<I<L.

" A‘block is, essentially, the submatrix of X formed by the rows associated with the mode 1 objects in Sy and the columns corresponding to the mode 2 objects in T;. The

term comes from the blockmodeling literature (see Doreian et al., 2005).

Step TMKLMH2. Reassignment of Mode 2 Objects.
Step TMKLMH2a: Compute X;; forall 1 <k<Kand 1 <I<L.

Step TMKLMH2b. Compute fj; = Zlez (x5 — ) 1<j<m

and 1 <I<L.

Step TMKLMH2c. Update w by setting jeT;: B = mhin {Bjn}, for all
1<h=<L

ieSy

1<j=<m.
Step TMKLMH2d. If Tj=@ for any I (1 <I<L), then set j e T;: Bj; =

max { min {Bj}). Set B;;=0 and repeat this step as needed to
1<j<m 1<h<L

ensure no empty clusters.
Step TMKLMH3. Compute firr,w). If fm,w)<f*, then set f*=fw,w)
and return to Step TMKLMHT1; otherwise, stop.

Defining an iteration as a cycle through Steps TMKLMH1 and
TMKLMHZ2, the computational requirement per iteration is for 2KL
centroids, and the evaluation on nK+ mL possible assignments of
objects to clusters. The number of iterations required for conver-
gence tends to depend on problem size (i.e., n, m, K, and L) and the
quality of the initial random partition obtained in Step TMKLMHO.

The performance of TMKLMH is sensitive to the initial parti-
tions obtained in Step TMKLMHO and, therefore, we recommend
the heuristic be restarted many times (e.g., 500 restarts in the pre-
vious studies by Brusco and Steinley (2007b) and van Rosmalen
et al. (2009)) to avoid the potential for a poor local minimum.
Another important concern is that empty clusters can arise in
Steps TMKLMH1c and TMKLMHZ2c¢ and, accordingly, this is reme-
died by reassignment of the case that is farthest from its current
cluster centroid to the empty cluster (see Steps TMKLMH1d and
TMKLMH2d).

In an extensive comparative study reported by van Rosmalen
et al. (2009), a multiple restart (multistart) implementation of
TMKLMH generally outperformed all of the following: an exchange
procedure (Gaul and Schader, 1996); a simulated annealing heuris-
tic (Trejos and Castillo, 2000); and a tabu search method (Castillo
and Trejos, 2002). Thus, multistart TMKLMH is considered one of
the best available methods for TMKLMP. Nevertheless, computa-
tional results for one-mode K-means clustering (see Brusco and
Steinley, 2007a) suggest that embedding K-means heuristics within
a real-coded genetic algorithm can yield better performance than
multiple restarts alone. Accordingly, in the next subsection, we pro-
pose a new real-coded genetic algorithm for TMKLMP adopting this
strategy.

2.3. Areal-coded genetic algorithm

An initial population is obtained by applying restarts of
TMKLMH, obtaining the X, values for each solution, and unfolding
these centroids into KL length vectors representing the chromo-
somes. Thus, each unique x;; value is a gene of the chromosome.
Offspring centroids are then obtained by crossover operations that
splice the chromosomes of two randomly-selected ‘parents’ from
the population, as well as mutation operations that occasionally
perturb some of the genes in the chromosomes. The precise steps
of our implementation of the two-mode genetic algorithm (TMGA)
are as follows:

Step TMGAO. Establish a population of C chromosomes by run-
ning Cmax restarts of TMKLMH and unfolding the centroids (i.e., the
final x;; values) of the C best restarts (i.e., those restarts produc-
ing the C smallest f{;r,w) values) into KL length real-valued vectors.
Define P as the KL x C matrix with columns corresponding to these
chromosomes. Let 7* and w* correspond to the partitions yielding
the minimum value of f{77,w) across all of the restarts. Set the muta-
tion probability parameter (1), the maximum number of iterations
with no improvement parameter (Tmax ), and its counter 7 =0.

Step TMGAL. Crossover (chromosome splicing).

Step TMGAT1a: Randomly select two vectors, p; and p,, from P.
Step TMGA1b. Randomly select an integer, d, on the interval [2,KL-
1].

Step TMGAT1c. Create a new chromosome, q, by splicing the first d
elements of p; with the last KL-d elements of p;.

Step TMGA2. Mutation.

Step TMGA2a: Generate a KL-length vector, u, of uniform [0,1]
random numbers.

Step TMGA2b. If up<A, then replace g, with a uniformly-
distributed random number on the interval bounded by the
minimum and maximum values in X.

Step TMGA3. Evaluation

Step TMGA3a. Fold q into the x;,; values.

Step TMGA3b. Using x;, as input, apply steps TMKLMH1 and
TMKLMH?2 of the TMKLMH procedure to reassign cases and obtain
T and .

Step TMGA3c. Compute f{rr,w). If f7r,w) < flr*,w™*), then set 7* =,
o™ =w, T=0,update P by replacing the chromosome corresponding
to the largest value of the objective function with the x; values for
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* and w*, and return to Step TMGAT1; otherwise, proceed to Step
TMGA3d.

Step TMGA3d. Set t=1 + 1. If T> Thax, then stop; otherwise, return
to step TMGAL.

Defining an iteration as a cycle through Steps TMGA1, TMGA2
and TMGAS3, the computational requirement for the algorithm con-
sists of random selection of two chromosomes to form a KL-length
vector, a random perturbation operation on the KL-length vector,
and then iterations of the TMKLMH algorithm until convergence.
As noted in the previous subsection, computational requirement
for TMKLMH is for 2KL centroids, and evaluation of nK+mL pos-
sible assignments of objects to clusters. Accordingly, the run-time
requirement for an iteration of TMGA is not much different from
TKMLMH, and fewer iterations are often required for convergence
because the initial partition is not random but obtained from splic-
ing together two sets of centroids.

In Step TMGAO, Cnpax restarts of the TMKLMH algorithm are
used to establish an initial population of C chromosomes, and the
mutation probability and termination parameters are initialized.
So, for example, if Chax = 1000 and C=100, then 1000 restarts of the
TMKLMH are applied and the initial population of chromosomes
corresponds to the 100 best solutions (i.e., smallest f{rr,w) values)
across those 1000 restarts. A crossover operation is used in Step
TMGAT to produce a new ‘offspring’ chromosome. Each gene in the
new chromosome is mutated with probability A in Step TMGA2. If
a gene is randomly selected for mutation, then this is accomplished
by randomly selecting a real value on the range of the data. If a new
best-found solution is identified in Step TMGAS3, then it is installed
and the index 7 is reset to zero. The population of chromosomes (P)
is also updated each time a new best-found solution is realized in
Step TMGA3c. If a new best-found solution is not obtained, then
is incremented, and the algorithm terminates if 7> Tyax.

3. Computational results
3.1. Experimental design

We adopt the experimental design used by van Rosmalen et al.
(2009) in their comparative evaluation of methods for TMKLMP.
The authors manipulated four design features at three levels each.
The first design feature was the number of objects for mode 1 and
mode 2, which was tested at levels of (n=60, m=60), (n=120,
m=120),and (n=150, m=30). The second design feature, the num-
ber of clusters for modes 1 and 2, was tested at levels of (K=L=3),
(K=L=5),and (K=L=7). Cluster density, which reflects the relative
sizes of the mode 1 and mode 2 clusters, was the third design fea-
ture. The first level of cluster density assumed clusters of equal size
for the two sets of objects. The second level assumed, for each mode,
that there was one large cluster consisting of 60% of the objects
and that the remaining objects were equally distributed among
the remaining clusters. The third level assumed, for each mode,
that there was one small cluster consisting of 10% of the objects
and that the remaining objects were equally distributed among
the remaining clusters. The fourth design feature was the standard
deviation (o) of the normally distributed random error introduced
to the data, which was tested at levels of 0 =.5, 0=1.0, and 0 =2.0.

The four design features, each with three levels, yield a total
of 3¥=81 unique test data configurations. For each configuration,
n, K, and the density level were used to establish an n x K matrix
(Y) of mode 1 cluster assignments. Similarly, m, L and the density
level were used to produce an m x L matrix (Q) of mode 2 clus-
ter assignments. A K x L centroid matrix, W, was established by
randomly assigning values of the inverse standard normal cumu-
lative distribution function, @ (h/(KL + 1)), for all 1 <h <KL, to the

elements of W. Finally, elements of an n x m error matrix, E, were
randomly generated from a normal distribution with mean zero
and standard deviation o. The data matrix, X, for the configuration
was then constructed using Y, Q, W, and E as follows:

X = YWQ +E. (3)

The data were generated using MATLAB. Ten replications for
each of the 81 design configurations were generated by changing
the random number generation seed, which resulted in 810 distinct
datasets.

3.2. Implementation of methods

The TMKLMH and TMGA algorithms were programmed as MAT-
LAB m-files and are freely available from the first author. We
acknowledge that the selection of the number of restarts for
TMKLMH and TMGA for our simulation experiment has some
degree of arbitrariness; however, three pragmatic principles were
employed. First, we considered guidelines from two previous stud-
ies (Brusco and Steinley, 2007b; van Rosmalen et al., 2009), where
500 restarts were used for TMKLMH. Second, we sought to expand
on the number of restarts for TMKLMH, while preserving com-
putational feasibility for the simulation experiment. Third, we
adapted the code so that we could measure the best-found VAF
measure after different levels for the number of restarts. Accord-
ingly, TMKLMH was implemented using 2000 restarts (four times
the number in previous studies); however, intermediate results
were collected after 10, 100, 500, and 1000 restarts.

Two different versions of the TMGA algorithm were considered.
The first version, TMGA(a), was designed to measure the benefit
of genetic search above and beyond what can be achieved with
TMKLMH. The parameter settings for TMGA(a) were Cmax =2000,
C=100, Tmax =2000. Because TMGA(a) uses the same number of
restarts as TMKLMH, its performance must be at least as good
as TMKLMH on each test problem. The second version, TMGA(b),
was designed to be a direct competitor with TMKLMH in terms
of computational effort, with parameter settings of Cmax =1000,
C=100, tmax =1000, and A =.05. Accordingly, TMGA(b) is allowed
only one-halfthe number of restarts as TMKLMH; however, it is also
permitted genetic search iterations that attempt to escape from
local optima via crossover and mutation operations. For TMGA(b),
we collected intermediary results for the genetic search process
after 10, 100, 500, and 1000 search iterations.

The TMKLMH, TMGA(a), and TMGA(b) algorithms were applied
to each of the 810 test problems, and four performance measures
were stored for each algorithm on each problem: (1) the best-found
VAF value, (2) the total computation time, (3) the partition recov-
ery for the mode 1 objects, and (4) the partition recovery for the
mode 2 objects.* Among these measures, VAF is the most impor-
tant because it is the criterion that the methods seek to optimize.
Partition recovery, which was measured using the adjusted Rand
index (ARI, Hubert and Arabie, 1985), is also an important criterion
because it helps to determine whether differences in the algorithms
translate into salient differences in their recovery of the partitions
of row and column objects based on the data generation process.
Throughout the remainder of this paper, we refer to the partitions
from the data generation process as the planted partitions. The ARI,
which is generally recognized as the best standard for measuring
partition agreement (Steinley, 2004), achieves a maximum value

4 The TMKLMH and TMGA algorithms were written as MATLAB m-files, and the
simulation study was completed using MATLAB version R2012b(8.0.0.783). The
hardware platform was a microcomputer using a 3.4 GHz Intel Core i7-2600 proces-
sor with 8.0 GB of RAM. All of the MATLAB files for replicating the simulation study
are available from the first author on request.



30 M. Brusco, P. Doreian / Social Networks 41 (2015) 26-35

of 1 for perfect agreement, whereas values near zero suggest only
chance agreement.

3.3. Experimental results

Table 2 provides a summary of the average performance meas-
ures for the planted partitions and each of the three methods
across all 810 test problems. The average computation times
for TMKLMH and TMGA(b) were roughly 50s, whereas TMGA(a)
required approximately twice the amount of computation time as
its competitors. The TMGA(a) algorithm yielded the best average
VAF value of .43616, followed by TMGA(b) at .43604 and TMKLMH
at .43579. The average VAF for the planted partitions was .43095.
Denoting VAF* as the best VAF value across the three methods for
any given test problem, TMGA(a), TMGA(b), and TMKLMH matched
VAF* for 95.6%, 85.2%, and 77.7% of the test problems, respec-
tively. The planted partitions matched VAF* for 45.2% of the test
problems.

Turning to head-to-head comparisons, TMGA(a) produced a bet-
ter objective function than TMKLMH for 173 (21.4%) of the 810 test
problems. As noted above, TMGA(a) cannot perform worse than
TMKLMH because TMKLMH is, effectively, used to establish the ini-
tial population for TMGA(a). Our results support the finding of van
Rosmalen et al. (2009) that TMKLMH is an excellent performer, but
the genetic algorithm was able to improve its result in more than
one-fifth of the test instances. The results in Table 2 also reveal
that improvement afforded in the VAF by TMGA(a) translated into
modest improvement in the recovery of the row and column clus-
ter structures. The average ARI values for the mode 1 objects for
TMKLMH and TMGA(a) were .828 and .836, respectively. Similarly,
the average ARI values for the mode 2 objects for TMKLMH and
TMGA(a) were .865 and .868, respectively.

The TMGA(b) implementation affords a more equitable compar-
ison to TMKLMH because of their comparable computation times.
Across the 810 test problems, the two algorithms obtained the
same VAF in 633 (78.1%) instances, TMGA(D) yielded a better VAF
for 153 (18.9%) problems, and TMKLMH provided a better VAF for
24 (3.0%) problems. Both a t-test on mean VAF performance and
a nonparametric sign test indicate that TMGA(b) outperformed
TMKLMH (p-value <.01). The TMGA(b) algorithm yielded a larger
ARI for mode 1 objects than TMKLMH (.836 vs. .828), but a slightly
lower average ARI for mode 2 objects (.864 vs. .865).

There are two important caveats regarding the relationship
between the VAF and ARI results in Table 2. The first is that mean-
ingfulness of the ARI values is predicated on the quality of the VAF
associated with the planted partitions. We elaborate on this issue
when discussing the detailed results for the design feature lev-
els below. The second caveat pertains to the fact that small VAF
differences do not always imply small ARI differences. The VAF
averages range from .43579 to .43616, the mode 1 ARI averages
range from .828 to .836, and the mode 2 ARI averages range from
.864 to .868. These narrow ranges for the averages can lead to the
conclusion that small VAF differences translate to small ARI dif-
ferences; however, closer inspection revealed this is not always
the case. Across the 810 test problems, the maximum VAF differ-
ence between TMGA(a) and TMKLMH was only .00983, and most
observed differences were appreciably smaller. Contrastingly, the
maximum mode 1 and mode 2 ARI differences between TMGA(a)
and TMKLMH were much greater at .449 and .414, respectively.
Moreover, there were 33 test problems where the mode 1 ARI dif-
ference between the TMGA(a) and TMKLMH solution was .10 or

5 More precisely, for two partitions: (i) ARI> 0.9 indicates excellent agreements;
(ii) 0.9 > ARI > 0.8 suggests a good agreement; (iii) 0.8 > ARI > 0.65 can be viewed as
a moderate agreement; and (iv) ARI <0.65 indicates poor agreements.

greater, as well 27 instances where the mode 2 ARI difference was
.20 or greater. The key point associated with these results is that
it would be a mistake to assume that small differences in the VAF
values always translate into trivial differences in the mode 1 and
mode 2 partitions.

Table 3 provides average VAF results, for each of the three meth-
ods and the planted partitions corresponding to the data generation
process, for different levels of each of the four design features. Sim-
ilarly, Table 4 offers the percentage of test problems for which the
best-found VAF (VAF*) was achieved. The most important aspects
of these tables are: (1) the TMGA(b) algorithm provided an average
VAF that was equal to or larger than the average VAF of TMKLMH at
all levels of all design features, (2) the TMGA(b) algorithm obtained
VAF* for a greater percentage of test problems than TMKLMH at all
levels of all design features, (3) the TMGA(a) algorithm provided
an average VAF that was equal to or larger than the average VAF of
TMGA(b) at all levels of all design features, (4) the TMGA(a) algo-
rithm obtained VAF* for a greater percentage of test problems than
TMGA(b) at all levels of all design features, and (5) the planted par-
tition produced excellent VAF values for the o =.5 design feature
level; however, the algorithms generally yielded better VAF's than
the planted partitions at the higher error level conditions of 6=1.0
and 0=2.0.

All three methods yielded exceptional performance when there
were K=L=3 clusters of mode 1 and mode 2 objects. At this design
feature level, each method yielded an average VAF of approximately
.39098, whereas the average VAF for the planted partitions was
.38764. The percentages of best-found VAF values at K=L =3 for the
planted partitions, TMKLMH, TMGA(a), and TMGA(b) were 51.1%,
97.4%,99.6%, and 98.9%, respectively. Contrastingly, at K=L =7 clus-
ters, there was much greater disparity in the performance of the
algorithms, where the average VAF values for the planted partitions,
TMKLMH, TMGA(a), and TMGA(b) were .46713,.47300, .47399, and
47369, respectively. Likewise, the percentage of best-found VAF
values at K=L=7 for the planted partitions, TMKLMH, TMGA(a),
and TMGA(b) were 43.7%, 56.7%, 91.5%, and 70.7%, respectively.

All three methods also yielded good performances when there
was an equal number of objects in each cluster. At this design
feature level, the average VAF values for the planted partition,
TMKLMH, TMGA(a), and TMGA(b) were .44454, .44820, .44838, and
44832, respectively, and the percentage of best-found VAF val-
ues for TMKLMH, TMGA(a), and TMGA(b) were 87.8%, 99.3%, and
90.7%, respectively. Contrastingly, there was much greater disparity
among the methods when there was one small cluster containing
10% of the objects, with an equal distribution of objects among the
remaining clusters. At the 10% density level, the average VAF values
for the planted partitions, TMKLMH, TMGA(a), and TMGA(b) were
41253, .41950, .42202, and .41996, respectively, and the percent-
age of best-found VAF values for the planted partitions, TMKLMH,
TMGA(a),and TMGA(b) were 41.1%,60.4%, 88.9%, and 76.3%, respec-
tively.

All three methods performed well at the low-error design fea-
ture level of o =.5, where the average VAF values for the planted
partitions, TMKLMH, TMGA(a), and TMGA(b) were .72996, .72966,
.72990, and .72976, respectively, and the percentage of best-found
VAF values for the planted partition, TMKLMH, TMGA(a), and
TMGA(b) were 93.7%, 91.5%, 97.0%, and 95.6%, respectively. Clearly,
at this low-error setting, the planted partitions reflect the strong
cluster structure, and the algorithms often match, but seldom sur-
pass, the VAF of the planted partitions. We probed more deeply into
the results for the low-error setting, and discovered that all of the
instances where TMGA(a) failed to match the VAF of the planted
partitions occurred at the 10% density condition. This reinforces
the finding observed in the preceding paragraph, which suggests
that the 10% density condition is especially challenging for these
algorithms.
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Table 2
Simulation results—overall performance summary.

Planted TMKLMH TMGA(a) TMGA(b)
Average computation time (s) - 50 102 51
Average VAF 43095 43579 43616 43604
Number of best-found VAF's out of 810 possible 366 629 774 697
Percentage of best-found VAF's out of 810 possible 452 77.7 95.6 85.2
...... Number of VAF's better than Planted - 438 443 441
Number of VAF's better than TMKLMH 29 - 173 153
Number of VAF's better than TMGA(a) 9 0 - 30
Number of VAF's better than TMGA(b) 16 24 113 -
Average ARI (mode 1 objects) - .828 .836 .836
Average ARI (mode 2 objects) - .865 .868 .864
Table 3
Simulation results—average VAF results by design feature levels.
Design feature Level Planted TMKLMH TMGA(a) TMGA(b)
Number of objects n=m=60 43163 43705 43752 43741
n=m=120 43085 43155 43169 43152
n=150, m=30 43037 43876 143926 143918
Number of clusters K=L=3 38764 .39098 .39098 .39098
K=L=5 43807 44339 44351 44345
K=L=7 46713 47300 47399 47369
Cluster density Even distribution 44454 44820 44838 44832
60% in largest 43578 43967 43988 143984
10% in smallest 41253 141950 42022 141996
Error level o=.5 72996 72966 72990 72976
o=1.0 41035 41166 41181 41178
=2.0 15254 .16604 16677 16658

Atthe o =2.0level oferror, the average VAFvalues for the planted
partition, TMKLMH, TMGA(a), and TMGA(b) were .15254, .16604,
.16677, and .16658, respectively, and the percentage of best-found
VAF values for the planted partitions, TMKLMH, TMGA(a), and
TMGA(b) were .7%, 53.0%, 91.5%, and 64.8%, respectively. At this
high-error setting, two observations are evident: (i) it is clear that
all of the algorithms generally produce a better VAF than the planted
partitions, and (ii) there is greater variability in performance among
the algorithms. Although the average VAF for the planted partitions
(.15254) is not seriously lower than that of TMGA(a) (.16677) and
the other two algorithms, the small percentage of best-found VAF
values for the planted partitions is of concern when interpreting
ARI values. To illustrate, we found that the average ARI values for
all three algorithms are in the .98 to .99 range for the o =.5 error
level, and in the .92 to .95 range for o = 1.0. This is excellent recovery
and suggests that the planted partitions are a reasonable indicator

of underlying cluster structure. However, at the o =2.0 error level,
the average ARI values for all three algorithms are in the .59 to
.66 range, which leads to the conclusion that recovery of cluster
structure cannot legitimately be measured at this highest level of
error.

3.4. Evolution of VAF as a function of restarts and search
iterations

To complete the analysis of the simulation results, we examine
how the solution quality of the THKLMH and TMGA(b) algorithms
evolves over time. Concretely, using the number of restarts as a
surrogate for time, Table 5 reports the average VAF and percentage
of best-found VAF's for TMKLMH at 10, 100, 500, 1000, and 2000
restarts. The results for the TMGA(b) heuristic at 1000 restarts and
zero genetic search iterations are equivalent to those of TMKLMH

Table 4
Simulation results-Percentage of best-found VAF results by design feature levels.
Design Feature Level Planted TMKLMH TMGA(a) TMGA(b)
Number of objects n=m=60 44.1 74.8 95.6 82.6
n=m=120 59.6 87.4 96.7 90.4
n=150,m=30 31.9 70.7 94.4 82.6
Number of clusters K=L=3 51.1 97.4 99.6 98.9
K=L=5 40.7 78.9 95.6 85.9
K=L=7 43.7 56.7 91.5 70.7
Cluster density Even distribution 47.8 87.8 99.3 90.7
60% in largest 46.7 84.8 98.5 88.5
10% in smallest 41.1 60.4 88.9 76.3
Error level o=.5 93.7 91.5 97.0 95.6
o=1.0 41.1 88.5 98.1 95.2
=2.0 7 53.0 91.5 64.8
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Table 5
Simulation results-Evolution of VAF improvement for TMKLMH and TMGA(b).

TMKLMH Results

TMGA(b) Results

Average VAF

Percentage of best-found VAF's

Average VAF Percentage of best-found VAF's

10 Restarts 42886 41.98
100 Restarts 43428 64.57
500 Restarts 43538 71.98
1000 Restarts 43556 74.32
2000 Restarts 43579 77.65
1000 Restarts

0 genetic search iterations - -
10 genetic search iterations - -
100 genetic search iterations - -
500 genetic search iterations - -
1000 genetic search iterations - -
All genetic search iterations - -

43556 74.32
43570 75.93
43585 78.77
43596 81.11
143601 83.58
43604 85.19

at 1000 restarts, thus providing a balance point for the two algo-
rithms. Table 5 also reports the performance measures (average
VAF and percentage of best-found VAF's) for TMGA(b) after 10, 100,
500, 1000, and ‘all’ of the genetic search iterations employed by
the algorithm. The ‘all’ category reflects that the total number of
genetic search iterations is not deterministic because the termi-
nation criterion is based on tmax =1000, which is the number of
genetic search iterations with no improvement in the objective func-
tion. Together, the results in Table 5 provide information regarding
(i) how TMKLMH solution quality evolves as a function of the num-
ber of restarts, and (ii) the evolution of the improvement in an initial
solution provided by TMKLMH as a function of the genetic search
iterations employed by TMGA(D).

The TMKLMH heuristic performed reasonably well with only
10 restarts, with an average VAF of .42886 and realization of the
best-found VAF for nearly 42% of the test problems. Increasing
the number of restarts to 100 only improved the average VAF by
approximately .006; however, the number of best-found VAF val-
ues increased to roughly 65%. Using 500 restarts, as was reported
by van Rosmalen et al. (2009), improved average VAF to .43538 and
nearly 72% of the best-found VAF values were obtained. This finding
suggests that the 500 restarts used in this earlier study provided a
reasonable estimate of average VAF for TMKLMH because increas-
ing the number of restarts to 2000 only improved average VAF by
.00041 t0.43579. At 1000 restarts, TMKLMH yielded an average VAF
of .43556 and matched the best-found VAF approximately 74% of
the time. Notice that these results are identical to those reported for
TMGA(b) with 0 genetic search iterations because TMKLMH with
1000 restarts is the starting point for TMGA(D).

The key result in Table 5 is that TMGA(b) using 1000 restarts
and only 100 genetic search iterations outperformed TMKLMH with
2000 restarts with respect to both average VAF (.43585 vs. .43579)
and percentage of best-found VAF values (78.77% vs. 77.65%). This
is important because it clearly reveals that the modest computa-
tional investment of 100 genetic search iterations using TMGA(b)
produced better results than the more demanding burden of 1000
additional restarts (from 1000 to 2000) for TMKLMH. Moreover,
500 genetic search operations for TMGA(b), which is still modest
in comparison to 2000 restarts for TMKLMH, yielded improve-
ment of average VAF to .43596 and matched the best-found VAF for
approximately 81% of the test problems. Using 1000 genetic search
iterations for TMGA(b) produced an average VAF of .43601 and
obtained approximately 84% of the best-found VAF's. Once again,
it is critical to stress that applying TMGA(b) with 1000 (random)
restarts plus 1000 genetic search iterations will require less com-
putation time than using TMKLMH with 2000 (random) restarts
because the starting solutions in the genetic search process are
much better than random initial solutions and, accordingly, require
less time to refine to a local optimum.

4. An example—The Turning Point Project
4.1. The two-mode network

The computational results in the previous section reveal that
TMGA generally outperforms TMKLMH with respect to the VAF
criterion function. Although the VAF criterion function differences
are typically quite small, as we noted above, this should not be
misinterpreted as evidence that the partition differences are nec-
essarily trivial. To illustrate this point, we consider an application
of TMKLMP to the blockmodeling of social network data related
to the Turning Point Project (TPP).° The two modes consist of
n=108 organizations that each signed one or more of m=25 rad-
ical, environmental activist-oriented” advertisements in the New
York Times (NYT) during 1999-2000. Different sets of organizations
signed different advertisements—but with considerable overlaps
for some signing organizations. Accordingly, the data are in the
form of a 108 x 25 two-mode binary matrix (X) that corresponds to
ties between organizations and full one-page advertisements in the
NYT that they signed. The elements of X are x;;=1 if organization
i signed advertisement j and x;; =0 did not sign the advertisement.
The total number of organizations signing a specific advertisement
ranged from 16 to 28. The number of signatures from organiza-
tions ranged from 1 (18 organizations) to 22 (1 organization). There
was great variation in the overall participation of organizations.
Going into the clustering analysis, our expectation was that most
organizations signing multiple advertisements were more likely to
concentrate them into specific substantive domains.

The application of TMKLMP methods to the binary network
matrix, X, ought to produce partitions of the organizations and
advertisements such that the elements of the submatrices pro-
duced by crossing one of the organization clusters with one of the
advertisement clusters is either mostly Os or mostly 1s. In the ver-
nacular of social network analysis, such crossings are called blocks,
and a block of all (or mostly) zeros is called a null block, whereas
a block of all (or mostly) ones is called a complete block. There-
fore, in this particular context, the TMKLMP methods are used as
a ‘two-mode blockmodeling’ tool that seeks to establish a Kx L
‘image matrix’ that is a parsimonious representation of the much
larger n x m network matrix. The elements of the image matrix
are the identifiers ‘complete’ (if the block contains mostly ones) or
‘null’ (if the block contains mostly zeros). A comprehensive treat-
ment of blockmodeling is provided by Doreian et al. (2005), and

6 These data were collected and assembled by the second author from whom they
are available. A fuller description of the data is provided by Brusco et al. (2013c).

7 Every advertisement finished with information about, and calls for, action to be
taken by readers.
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Table 6
The VAF results for the Turning Point Project network.
L=3 L=4 L=5 L=6
K=3 TMKLMH 27286858 .28313530 .28934383 29271834
TMGA 27286858 28313530 28934383 29271834
K=4 TMKLMH 32567962 .34416520 .35606338 .35888974
TMGA 32567962 34416520 .35606338 35897234
K=5 TMKLMH 36614905 39720306 40837899 41296559
TMGA 36614905 .39720306 40837899 41296559
K=6 TMKLMH 38758827 43958942 45569737 45957118
TMGA 38758827 43958942 45569737 46069277
K=7 TMKLMH 39957810 146123685 50177582 .50748522
TMGA 39964065 146123685 50177582 .50748522
K=8 TMKLMH 40983005 47620763 .52631504 53354713
TMGA 41102357 47620763 52631504 .53354713
K=9 TMKLMH 141949578 48702308 54269325 .55097730
TMGA 41969739 48765685 54269893 55148845
K=10 TMKLMH 42355529 149625425 .55587062 .56696906
TMGA 42703290 149677179 55616637 56748022
Note—The 12 instances where TMGA yielded a better VAF than TMKLMH are highlighted in bold.
Table 7
Image matrix for the Turning Point Project network.
TMGA TMKLMH GE ads EG ads IA ads TM ads EC ads
nm=3 nm=3 Complete Complete Complete Complete Null
n;=4 n;=4 Complete Complete Null Null Complete
n3=11 n;=11 Complete Null Complete Null Null
n;=8 n;=8 Complete Null Null Null Null
ns=10 ns=10 Null Complete Null Null Null
ng=13 ng=10 Null Null Complete Null Null
n;=10 n;=18 Null Null Null Complete Null
ng=21 ng=21 Null Null Null Null Complete
ng=28 ng=23 Null Null Null Null Null

Note—The first two columns contain the number of organizations in each of the 9 clusters for the TMGA and TMKLMH partitions, respectively. Values in bold in the first two
columns indicate that the TMGA and TMKLMH cluster memberships were the same. The remaining columns identify the complete and null blocks for the 9 x 5 image matrix,

which was the same for the TMGA and TMKLMH partitions.

contributions related to two-mode blockmodeling are found in
Borgattiand Everett (1997), Bruscoetal.(2013a,2013b), Brusco and
Steinley (2007b, 2011), Doreian et al. (2004), Doreian et al. (2013)
and Everett and Borgatti (2013).

4.2. Results and analysis

The TMKLMH and TMGA (implementation TMGA(b)) algorithms
were applied to the TPP network for all 32 combinations of clus-
ters on the intervals of 3 <K< 10 and 3 <L <6. The VAF results are
reported in Table 6. Across the 32 combinations, the TMKLMH and
TMGA algorithms produced the same VAF values for 20 combina-
tions, whereas the TMGA algorithm yielded a better VAF in the
remaining 12 instances, which are highlighted in bold in the table.
Eight of the 12 instances where TMGA provided a solution with
a better VAF than TMKLMH corresponded to the K=9 and K=10
conditions, where TMGA was better at each of the four settings for
L8

An inspection of the VAF values in Table 6 reveals that L=5 is a
consistently good choice for the number of clusters for the adver-
tisements. For most values of K, there was a marked improvementin
VAF when going from L=4 to L =5 clusters, but very little additional
improvement when going from L=5 to L=6 clusters. A selection

8 The fact that the superiority of TMGA increases for a larger number of clusters is
an important result, which is consistent with the findings for genetic algorithms in
the one-mode K-means context (Brusco and Steinley, 2007a). Moreover, it suggests
that an expansion of the test conditions in van Rosmalen et al. (2009) to include
K/L combinations greater than K=L=7 might lead to greater discernment among
competitive methods.

of L=5 clusters is also conceptually appealing® because the clus-
ter memberships consistently corresponded to five meaningful
categories defined by the organizers of the TPP, which provide
insight into the natural or logical partitioning of the advertisements
into underlying themes. The categories were: Ecological catastro-
phe (EC); Economic globalization (EG); Genetic Engineering (GE);
Industrial agriculture (IA) and Techno-mania (TM).

Aselection of K=9 clusters for the organizations was made based
on the modesty of the improvement in VAF associated with increas-
ing K to 10, as well as the interpretability of the solution. The
difference in the VAF values for TMKLMH and TMGA at K=9 and
L=5 clusters was extremely modest (VAF=.54269325 for TMKLMH
vs. VAF=.54269893 for TMGA). Despite this seemingly paltry differ-
ence of .00000568 in the VAF values, there were some noteworthy
differences in the partitions of the organizations for the two meth-
ods. As shown in the first two columns of Table 7, six of the nine
clusters of organizations were the same for the TMKLMH and TMGA
methods; however, three were appreciably different in size. As
a formal measure of agreement, we computed an adjusted Rand
index of .766 between the TMKLMH and TMGA partitions for the
organizations. Based on the standards in Steinley (2004), a value
of .766 is at the high end of the range for ‘fair’ agreement between
the partitions. Thus, despite the modest difference in VAF associated
with TMKLMH and TMGA, their partitions of the organizations have
some marked differences.

9 That the clustering of the columns corresponds exactly with the five substance

areas of the advertisements, despite many organizations signing advertisements in
multiple domains, adds to validity of the results from using the methods described
here.
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Although there are some salient differences in some of the orga-
nization clusters associated with the TMKLMH and TMGA solutions,
both methods produced the same image matrix, which is displayed
in the last five columns of Table 7. From a blockmodeling per-
spective, identifying the correct blockmodel is crucial and both
methods agree on the column clusters. Each algorithm uncovered
one small cluster (cluster 1) of three organizations that were heavy
signers of advertisements in four of the five categories, with the
EC ads being the exception. Even so, one of these three organiza-
tions, the Earth Island Institute, signed in all five categories (22
separate advertisements in total), including all of the EC ads. The
other dominant organizational signer was the International Forum
on Globalization, which also signed in all five areas. Both algorithms
also extracted a small cluster (cluster 2) of four organizations that
were heavy signers of ads in each of the GE, EG, and EC categories,
as well as a cluster (cluster 3) of 10 organizations that were heavy
signers in both the GE and IA categories. The TMKLMH and TMGA
algorithms also produced identical clusters of organizations that
were heavy signers in only one category (GE, cluster 4), (EG, cluster
5), and EC (cluster 8). This was to be expected as some of the orga-
nizations had core interests that led them to sign in a single area.
This was detected using both methods.

The disparity between the TMKLMH and TMGA solution
occurred in clusters 6, 7, and 9. Cluster 6 corresponded to orga-
nizations that were heavy signers of only the IA ads. Whereas
the TMGA solution contained 13 organizations in cluster 6, the
TMKLMH solution contained only 10. Contrastingly, the TMKLMH
solution placed 18 organizations in cluster 7, which corresponded
to heavy signers of only the TM ads, whereas the TMGA solution
had only 10 organizations in this cluster. The reported ARI value is
driven by the differences in these three clusters of organizations.
Again from a blockmodeling perspective, differences in row clus-
ter memberships are problematic with regard to interpreting the
stances of organizations. However, the cores of these clusters show
considerable consistency with the differences being due to those
organizations signing much fewer advertisements.

5. Summary and extensions

This paper has two primary purposes. First, it brings to light
an important, yet understudied, extension of minimum sum-of-
squares clustering. Potential applications of the TMKLMP include
(but are not limited to) the analysis of gene expression data, the for-
mation of manufacturing cells, the investigation of buyer/supplier
relationships in a supply chain, the study of vocabulary used in a
set of documents, the participation of organizations in projects or
political activities, and the social behavior of individuals in social
networks. Much of the blockmodeling partitioning has been applied
to binary networks. The methods introduced here can extend block-
modeling to tackle valued networks. Another approach in this
area is provided by Ziberna (2007), particularly with homogeneity
blockmodeling. Second, a new real-coded genetic algorithm for the
TMKLMP has been introduced and shown to perform well relative
to a multistart implementation of two-mode KL-means clustering
(i.e., TMKLMH) that been purported as the best available heuristic
procedure for the problem (van Rosmalen et al., 2009). Although
our findings reinforce those of van Rosmalen et al. (2009) in the
sense that TMKLMH generally performed well, the genetic algo-
rithm was able to improve the TMKLMH result in about one-fifth
of the test problems. Moreover, an implementation of the genetic
algorithm that was comparable to TMKLMH with respect to com-
putation time provides statistically superior results in terms of
VAF. An examination of the evolution of VAF across different lev-
els of restarts and genetic search iterations further exemplified the
efficacy of the genetic algorithm.

Extensions to this research can be divided into three areas.
The first area centers on the development of better methods for
the TMKLMP. This might include the design of other heuristic
approaches and initialization procedures. For example, it is pos-
sible that slightly modified initialization procedures could lead
to better performance, particularly for the difficult 10% density
probleminstances (see Brusco et al.,2013a). There is also the poten-
tial for progress in the area of exact approaches (see Brusco and
Doreian, in press). The second area focuses on data preparation.
In applications for real-valued networks (e.g., journal co-citation
data), it might be advisable to transform the raw matrix elements
prior to implementing TMKLMP; however, the precise nature of
such transformations remains an open research question. The third
area for future research involves comparisons of different objective
functions for heterogeneity blockmodeling. Although the sum-of-
squares criterion has a good pedigree in the statistical literature, it
is not necessarily the best approach in all circumstances.
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