For network effects models of network autocorrelation we use Monte Carlo
methods to study the relative properties of three estimation methods. The methods
are the iterative maximum likelihood estimation (Ord, 1975; Doreian, 1981),
ordinary least squares, and a regression-based “quick and dirty” substitution for
iterative MLE. Of the three, OLS is clearly the inferior estimation method and
MLE the superior method. We recommend the use of the maximum likelihood
method when network autocorrelation models are to be estimated.
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ur concern focuses on some of the technical issues arising
from the use of linear regression models when the data

points are interdependent. A cursory examination of the main-
stream journals in most social sciences reveals the widespread use
of regression methods. Among the assumptions, usually implicit,
underlying the use of these models is one concerning the
independence of data points.' However, many situations exist in
which the data points are not truly independent. Doreian (1981)
provides a partial listing of examples in which the interdepen-
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dence stems from contiguity or adjacency in geographical space.
White et al. (1981) deal with a network autocorrelation formula-
tion of Galton’s problem in which the dependency is generated by
diffusion or a cultural splintering process. Loftin (1972) provides
another example of Galton’s problem viewed in terms of spatial
autocorrelation.

Researchers who employ regression models in their research
are typically concerned with two problems: (1) assessing whether
or not a variable is significant, and (2) determining the values of
coefficients viewed as parameters. Some evidence suggests that
the pursuit of both objectives is seriously compromised by the use
of ordinary least squares (OLS) methods without taking into
account the interdependence among the data points. Loftin and
Ward (1983) provide a telling example in which the presumed
relation between population density and fertility is not supported
when autocorrelation is considered although OLS applied to the
same data set permits the inference that fertility does depend on
population density.” White et al. (1981) provide examples where
the specific parameter estimates differ when spatial autocor-
relation is ignored compared to when it is explicitly considered.

Thus, instances in the literature alert us to the possibility that
we may be misled by our OLS tools when there are inter-
dependencies between the data points of a particular data set.
However, these instances do not, by themselves, provide any
indication of how serious the risk is either for making incorrect
inferences or reporting inaccurate parameter estimates for a given
linear model. Some analytical results and some Monte Carlo
studies provide complementary pieces of evidence by which we
obtain some indication of the properties of estimation procedures
for linear models when we are confronted by interdependent data
points.

THE NATURE OF THE MODEL

In the context of network’ autocorrelation, broadly construed,
two kinds of models are distinguished: the network effects model
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and the network disturbances model. A discussion of these two
types of models is found in Doreian (1980). Our concern here is
with the network effects model and we note that a simulation
study has been conducted for the network disturbances model
(Dow et al., 1982).

The linear model conventionally estimated is as follows:

y=XB+e;e~ N0, wl [1

When the network effects* model is considered, it is usually
represented as

y=pWy+ X B+e:e~ N, wl) [2]

Obviously, if p= 0, then the model in equation 2 reduces to thatin
equation 1. Thus, for the purposes of this article, equation 2 will
be taken to be the model requiring estimation, with equation 1
being a special case. Given such a model, we will explore the
properties of three estimation strategies: (1) ordinary least
squares applied to the special case; (2) the maximum likelihood
method (as described in more detail in the following section); and
(3) a “quick and dirty” attempt to estimate equation 2 directly by
ordinary least squares. This method is also discussed in the
following section.

ESTIMATION STRATEGIES

If the model is given in equation 2 then, following Ord (1975), a
maximum likelihood approach can be undertaken. Assuming
equation 2, the likelihood function to be maximized is (with A =
I-pW)

2(y) = const - (N/2) In w +1n |A]

+(1/2w)(y'A'Ay - 26'X'Ay +f'X'X) (3]
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We estimate p as the scalar that minimizes
N ,
(-2/N) 2 In (1 = p) +In (y'My = 2py'MWy + o (Wy)MWy)  [4]
i=

where M = I - X(X’X) "X’ and the \; are the eigenvalues of W.
Once p is obtained, B is given by:

B=(X'X)"'X'Ay and & by’ [5]

= (i) 07 Ay !

with K being the number of regressors. The residual é is obtained
as € = (I-pW)y — XB. If OLS is used directly on equation 1, the
assumption is p = 0, with equation 3 reducing to the form of the
log-likelihood function for the classical normal linear regression
model. Then equation 5 reduces to

B=(XX)"Xy [7]
and equation 6 reduces to
@ = (1/N-K-1)y’'My = (1/N-K-1) (¢¢) [8]

Where é is the residual from the regression.

Conventional ordinary least squares is particularly easy,
whereas the maximum likelihood approach is more computa-
tionally burdensome. The maximum of the log-likelihood func-
tion given in equation 3 can be found from a direct search
procedure (see Doreian, 1981) or it can be done numerically via
an interative algorithm (see Ord, 1975). The latter is used here.

Doreian and Hummon (1976: 138-140), in a discussion of
spatial models, suggest the direct estimate of equation 2 by
ordinary least squares with Wy as another variable entered on the
right side of the equation and view such an approach as a variant
of generalized least squares. This we term a “quick and dirty”

Downloaded from smr.sagepub.com at UNIV OF PITTSBURGH on June 29, 2011


http://smr.sagepub.com/

Doreian et al. /| NETWORK AUTOCORRELATION MODELS 159

estimation method. Although the parameter estimates returned
by this method will be inconsistent, it is reasonable to ask whether
the strategy is useful either for providing some guidance con-
cerning the autocorrelation structure of the data or for providing
parameter estimates that are sufficiently good for practical
purposes.

DESIGN OF THE MONTE CARLO STUDY

Data were generated by specific regimes of parameters and
analyzed by all three estimation strategies. The parameters are the
slope and intercept coefficients, the variance of the disturbance
term, w, and the value of the network autocorrelation parameter,
p. A given matrix, W, representing the interdependencies between
specific data points and a matrix of observations on the
independent variables, X, were taken and remain fixed through-
out all of the simulation. In fact, W is taken to be the spatial
adjacency matrix used by Doreian (1981) and the independent
variables matrix is constituted by a column of 1s for the constant,
and two of the independent variables for the Louisiana data set®
reported in Table 2 of Doreian (1981). The vector of coefficients
(Bo, B1, B2) = (10, 0.3, -0.3) is used in the first set of simulations.
This will be referred to as the “full model,” although at a later
point we report on simulations where, first, 8; is set to 0 and,
second, B is set to 0. Given our interest in equation 2, batches of
100 random normal disturbance terms, €, were generated with
mean 0 and variance o and then were fed through the filter
implied by the following equation:

y=(I-pW) XB+(I-W) "¢ 9]

With the specification of a regime, the fixed W and X, and the
generation of the random disturbance terms, everything on the
right-hand side of equation 9 is given. In each of 100 runs under a
given regime, y and X together with W constitute the data set
analyzed by ordinary least squares (OLS), maximum likelihood
(MLE), and quick and dirty (QAD) methods. For OLS, p is
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assumed as 0 while MLE and QAD attempt to estimate it. Under
all methods there are attempts to estimate 8 and w.
At issue were the following:

(1) the bias, if any, of parameter estimates
(2) the true sample variability of estimates
(3) the reported sample variability (standard error)

(4) the frequency of incorrect and correct inferences

The spatial parameter will be bounded by -1 and +1. However,
as virtually all empirical instances show positive values of p, if
they show any value at all, the Monte Carlo studies have p
confined to 0 =< p = 0.9 as the computation involved in the
simulation is very large. Further, because of the computational
burden, we consider only 0.1, 0.3, 0.5, 0.7, and 0.9 as values of p
and only 4 values for the variance of the disturbance term,
namely, 25, 49, 81, and 1217 were used.

The data reported in the simulation results presented below
include the following:

(1) The mean value of each coefficient estimate (as a simulation
approximation for the expected value of that parameter
estimate).

(2) The actual standard deviation of these estimates (as a simulation
approximation to their true variation). This we label SDE.

(3) The mean of the reported standard error for each estimate (as a
simulation approximation to the theoretical value of the standard
error). This we label MRSE (not to be confused with the root
mean squared error—RMSE).

(4) The range of the parameter estimates.

(5) A count of both the correct and incorrect inference decisions.

These inference decisions are of two kinds: for any parameter,
denoted by 6, a null hypothesis of (1) Ho: =0, and (2) Ho: 0 = gen,
where Ogn is the actual parameter value used in the data
generation.
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ON THE BIAS AND SAMPLE
VARIABILITY OF OLS

The use of simulation is unnecessary in addressing the first
issue listed in the previous section when OLS is concerned. The
OLS B is biased. From equation 7,

B= (X% XYy
=(X'X)"'X'(AT'Xg+ A e)
= (X'X)IXATIXB+ (X'X) AT e [10]
So
Ef = (X'X)" ' X'A™'Xp [11]
If p = 0, then EB = B as required. But for p # 0, (X’X) ' X’A"'X is
not the identity matrix and B is biased for all regimes of spatial

autocorrelation. The magnitude of the bias is also obtained easily.
From equation 11 we have

Ef = (X'X) ' X'(1-pW)'X
=(X'X)"! x'(iigopiw‘)Xﬁ
= (XX HXX)B+ (XX) X (El P w‘) X8
=8+ (X'X)’IX'(;EOI piWi) Xg [12]
Hence, the bias is given by

Bias = (X’X)"x’( s piWi) XB [13]
i=1

Fromequation 11, or equation 12, the expected value of 8 can be
obtained, and from equation 13 the magnitude of the bias.
Further, this bias will increase with p.
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The true sample variability of 8 is readily obtained as is the
OLS report of the standard error. From equations 10 and 11,

B-EB=(XX) XA,
and so
(B-EP) (B - EBy = (XX)X'Aee A" X(X'X)"!
Taking expectations, we have
VB = o(X'X) ' X'ATAT X(X'X)™! [14]

In equation 14 if p = 0, then VB = w(X’X)™", which is the OLS
result. Clearly, as p departs from zero it is likely that the true Vs
not reported correctly by the OLS results. Writing Vg =
w(X’X)'Q, the behavior of Q provides some indication of the
extent to which the OLS report departs from the true sample
variability of the coefficient estimates. For OLS, Q = 1. Although
equation 14 is markedly nonlinear in p, it can still be used to show
the departure of w(X’X)™" from Vg (if w is known).

However, OLS does not report w(X’X)™" as it first has to
estimate w. Therein lies another problem with OLS. Consider €’e
in equation 8. By definition,

€=y-XB
=y - XXX)"' Xy
= [I-X'XX)™"'X]y=My [15]

If the OLS specification held, then é = Me and E é¢’¢ = wtr (M)
giving E¢’¢ = (N - K - 1)w (Goldberger, 1964). Which means w as
given in equation 8 is an unbiased estimator of w. But for network
autocorrelation, from equation 15, we have

é=M(ATIXg+A e
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and
Ee'e = E[eA™ M'MA™'¢] + XA MA™Xg
which reduces to
= wir(A'MA™) + XA MAT X [16]

If p=0, A™' =1 and equation 16 reduces to E¢’¢ = (N - K - 1)w and
E® = w (which are the OLS results). Thus we would expect OLS to
be in error when it reports a coefficient estimate and its standard
error.

SIMULATION RESULTS®

THE FULL MODEL

The full model is simply one in which none of the generating 8
parameters is set to zero when the data sets are created. We
consider first the case where there is no network autocorrelation
and then introduce network autocorrelation.

No Network Autocorrelation

For p=0, Table 1 gives the results when the disturbance term is
set to 121. Considering B, the mean parameter estimates are all
close to the generating value of 0.3. On rounding, all methods
return mean parameter estimates equal to the generating value.
As far as the standard deviation of the estimate is concerned,
MLE and OLS are close to each other and each is considerably
less variable than QAD. This makes sense, for the inclusion of Wy
as a regressor on the left-hand side of equation 2 amounts to
inclusion of an irrelevant regressor when p = 0, which leads to
lower efficiency (Rao and Miller, 1971). For both QAD and OLS
the mean reported standard error is less than the actual standard
deviation of the estimate, while for the MLE the mean reported
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TABLE 1
Parameter Estimates and Performance Measures for Runs with No
Network Autocorrelation: w =121

Mean
Mean Standard Reported
Parameter Deviation Standard Range of Estimate
Generating Estimate of Estimate Error
Parameter (MPE) (SDE) (MRSE) Min Max
Bl=0.3 MLE  0.3000% 0.0404 0.0469 0.1872 0.3813
QAD  0.3082 0.0679 0.0534 0.1651 0.5298
OLS  0.2984 0.0394 0.0367 0.1874 0.3755
52=—0.3 MLE -0.3026 0.0568 0.0547 -0.4486 -0.1012
QAD -0.3002 0.0576 0.0557 -0.4505 -0.0962
OLS -0.3026 0.0569 0.0556  -0.4484  -0.0996
BO=10.0 MLE 10.20 2.80 2.63 3.70 16.35
QAD 10.22 2.97 2.72 3.31 19.14
OLS 10.18 2.77 2.58 3.99 16.27
w=121 MLE 116.63 19.52 20.62 76.84 174.96
QAD  119.91 20.57 21.71 74.87 183.88
OLS  120.60 20.50 21.66 78.88 181.12
p=0 MLE -0.007 0.027 0.152 -0.031 0.164
QAD -0.046 0.222 0.196 -0.639 0.439

*Actually 0.29997.

standard error is above the actual standard deviation.” Finally,
QAD has a wider range for its estimates consistent with its having
a higher standard deviation. Focusing attention on B2, we see far
less variation across the estimation methods. All report a mean
parameter estimate equal to the generating value and the
standard deviations of the estimate are close. Further, the mean
reported standard error is close for all methods and all are close to
their corresponding standard deviation of the estimate; the ranges
are virtually identical. This suggests, and a subsequent simulation
bears this out, that there will be greater variability in terms of
perforlgnance when parameter B; is considered compared to that
of B.. '
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For the intercept, the mean parameter estimates for all
methods are close to each other, and the generating value of 10,
while the standard deviation of the estimates for MLE and OLS
are close. Both are slightly lower than the standard deviation of
the estimate for QAD. All three methods underreport the
standard deviation of the estimate for p = 0. For w, the MLE
estimate is below the QAD and OLS estimates, which are close to
each other. For the standard deviation of the estimate, MLE is
less than QAD and OLS (which are again close). For all
estimation methods the mean reported standard error is above
the actual standard deviation.

Finally, we consider p. Obviously, for p =0, OLS is preferable
as its expected value is 0, its bias is 0, and its standard error is 0.
The mean MLE estimate is closer to the actual generating
parameter of 0 than the QAD estimate and it has much smaller
variability across the estimates. Indeed, the QAD standard
deviation seems alarmingly large. In terms of the mean reported
standard error, we find the MLE report to be considerably above
its actual standard deviation, whereas the QAD mean reported
standard error is lower than the actual standard deviation. The
range of the MLE estimate is smaller than the range of the QAD
estimate. In fact, a range from -0.6 to +0.4, although containing
the generating value of 0, is large (and reflected in the high actual
standard deviation).

As far as 8 is concerned, for p = 0, all three methods perform
well, as would be expected. The biases are low or nonexistent and
the sample variances are comparable. If anything, QAD is more
variable than either OLS or MLE. For estimating p(=0) MLE is
closer to zero than QAD. It is much less variable across samples,
with QAD appearing inadequate. Further, the mean MLE report
of sample variability is much higher than the actual sample
variability (by a factor of around 6), whereas the reverse is true for
QAD. This pattern persists through the simulations, making
inference about p = 0 conservative for MLE and nonconservative
for QAD.

The simulation results for other values of w (but with p still set
to 0) are very simply summarized. The mean parameter estimate
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TABLE 2
Estimates of g4 in the Full Model for « =121 and 0.1 <p <0.9

Root Mean Range
Square of Estimates
Estimation Values Error
Method of p Mean Bias SDE (RMSE) MRSE Min Max
MLE 1 0.3002  0.0002 0.0405 0.0405 0.0482 0.1873  0.3818
3 0.3009  0.0009 0.0406 0.0406 0.0506 0.1876  0.3829
5 0.3016 0.0016 0.0408 0.0408 0.0532 0.1880  0.3841
7 0.3027  0.0027 0.0408 0.0409 0.0546 0.1884  0.3853
9 0.3044  0.0044 0.0408 0.0410 0.0551  0.1889  0.3864
QAD 1 0.2992  0.0008 0.0690 0.0690 0.0552  0.1567  0.5270
3 0.2791 -0.0209 0.0598 0.0633 0.0585 0.1409  0.5100
5 0.2581 -0.0419 0.0687 0.0805 0.0614 0.1204  0.4770
7 0.2414 -0.0586 0.0665 0.0886 0.0637 0.0989  0.4325
9 0.2464 -0.0536 0.0638 0.0833 0.0632 0.0999 0.3842
OLS 1 0.3205  0.0205 0.0424 0.0471 0.0368 0.1986  0.4027
3 0.3827  0.0827 0.0512 0.0972 0.0383 0.2301 0.4785
5 0.4893  0.1893 0.0666 0.2007 0.0429 0.2833  0.6140
7 0.7136  0.4136 0.1001 0.4255 0.0564 0.3908 0.9160
9 1.5422 1.2422 0.2326 1.2638 0.1244  0.7469  2.0802

is always on target for the regression coefficients. The standard
deviation of the estimate increases with w as does the mean
reported standard error.'’ Of course, the range of the estimate
tends to broaden with increasing w. All of the above is as
expected. The variability in the performance in the estimation
method is greater for B, than it is for B8,. The relative magnitudes
of the mean reported standard errors remain the same across
estimation methods.

In summary, the behavior of the parameter estimates for each
of the estimation strategies is straightforward and forms a point
of departure for the introduction of different degrees of network
autocorrelation.

Network Autocorrelation

With w = 121, we consider the full model with p ranging from
0.1 to 0.9. The results are displayed in Table 2. The standard
deviation of the estimate, SDE, is the actual standard deviation of
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the estimates (for each parameter) over all 100 runs. This
measures the actual variability of an estimator. For each run, a
value for the estimate of sample variability is computed. The
mean value of these is the mean reported standard error (MRSE)
and is taken to characterize the reports of sample variability
provided by an estimator. As is expected theoretically, the
estimates of B, are unbiased with MLE. The empirical approx-
imation to the amount of bias never exceeds 0.0044, which seems
trivially small.'> The direct measures of the sample variability
(SDE) remain virtually fixed throughout the range of p at around
0.04. Consistent with the results for p = 0, the mean reported
standard error from this procedure exceeds the standard devia-
tion of the estimates."”” The MLE estimates range from around
0.19 to around 0.39.

For the QAD method of estimation there appears to be a
downward bias in the estimate of 3;. Although this bias is slight
for small values of p, it does increase with increasing p. By p=0.5,
this downward bias is around 14% relative to the true value and
reaches around 189% for p equal to 0.9. The increase in the
magnitude of this bias appears much more consequential than the
slight increase of the bias under the MLE method. When we
consider the standard deviation of the estimates there is a slight
decrease in the variability of these estimates as p increases.'
Although the root mean square error (RMSE) provides a
composite estimate of bias and sample variability, it is not
necessary to compute it for a comparison between the MLE and
the QAD methods. For each value of p, the standard deviation is
higher for the QAD method, as is the value of the bias. So the
RMSE for MLE is always lower than for QAD. For QAD, the
mean reported standard error indicates that it always under-
reports the true variability of its estimates. However, as SDE
tends to decrease and MRSE tends to increase as p increases, the
magnitude of the underreporting decreases with p. To the extent
that t-ratios are constructed with an estimate of the sample
variability in the denominator, it is reasonable to surmise that a
bias in the estimation of standard error is in the direction of
finding more significant parameters than may be the case.
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Finally, the range of the parameter estimates under the QAD
method is considerably larger than under the MLE method
(which is consistent with the higher standard deviation).

The OLS data, comparable to those for MLE and QAD, are
found in the third panel of Table 2. As a method it fares badly. It is
biased upward in its estimation of B8;, with the bias getting larger
as p increases. For high p the bias is absurdly high. It is
noteworthy that for p = 0.5, the range of the estimate barely
includes the generating value of 0.3, whereas for p = 0.7 it no
longer includes the generating value. The direct estimate of the
sample variability, SDE, increases continually with p. For p=0.1,
the variability of the OLS estimate is comparable to that of the
MLE method. Although the MLE variability measure remains
constant, that for the OLS method increases rapidly. For small
values of p, the OLS sample variability is lower than that for the
QAD method and remains so until around 0.5. As it is more likely
to have values of network autocorrelation ranging between 0 and
0.5, it is worth noting that OLS estimation method for this
parameter does have lower variability over this part of the range
of p. In terms of RMSE measure, however, OLS is preferable
only for p = 0.1; thereafter the RMSE for QAD is lower than for
OLS. The mean reported standard error for the OLS method is
always less than the standard deviation of the estimates, sug-
gesting that when the downward bias of the reported standard
error is coupled to upward bias in the estimate of 81, there will be
many instances of a parameter being deemed significantly
different than 0 when its value is 0.

Of course, we would not need the simulation for much of the
third panel of Table 2 if we were to focus on OLS alone. The
analytical results presented earlier can be used to give the
performance of OLS. Use of equation 12 gives Ef and use of
equation 13 gives the bias of B3; these are shown in the first two
panels of Table 3. The close correspondence between the
theoretical and empirical values indicates that the data were
generated correctly. The third panel of Table 3 gives the expected
standard errors from use of equation 14 with w taken as 121, and
the fourth panel gives the extent to which OLS underreports the
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TABLE 3
Bias and Sample Variability of OLS in the Presence of Network
Autocorrelation: w = 121

Value of rho

Property Parameter .1 .3 .5 .7 .9
B 0.3221 0.3841 0.4902 0.7130 1.532
Expected B2 -0.3015  -0.3102  -0.3304  -0.3760  -0.5080
Value
Bo 10.46 11.99 15.19 23.80 76.97
B 0.0221 0.0841 0.1902 0.4130 1.223
Bias B2 -0.0015  -0.0102  -0.0304  -0.0760  ~0.2080
Bo 0.46 1.99 5.19 13.80 66.97
Theoretical B 0.040 0.049 0.065 0.099 0.234
Standard B2 0.056 0.058 0.064 0.077 0.118
Error
(Known w) Ro 2.753 3.262 4.236 6.53 17.41
81 1.084 1.323 1.754 2.681 6.322
Ratio to
oLS B2 1.005 1.043 1.140 1.375 2.102
Report
Bo 1.063 1.259 1.635 2.521 6.720

standard error (if w is taken as known). This panel clearly shows a
persistent tendency for OLS to underreport the true sample
variability for each of the regression parameters with this regime.

In summary, the performance of MLE is the best of the three
estimation methods, with that of OLS being the worst. We will
present a comparison of MLE and QAD in terms of inference
decisions after a discussion of the bias and sample variability
issues for the remaining parameters of the model.

From examination of the results in Table 1 it is reasonable to
suspect that the estimates of 8, are less sensitive to changes in the
values of the network autocorrelation parameter. This expecta-
tion is borne out by the results in Table 4. Given the very close
nature of the estimation results for p =0, it is not surprising to see
very similar results for p = 0.1 in Table 4. The estimation methods
are indeed close. Throughout the range of p the mean estimate of
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TABLE 4
Estimates of g, in the Full Model for w = 121 and 0.1 < » < 0.9

Range
Estimation Values of Estimates
Method of p Mean Bias SDE RMSE MRSE Min Max
MLE .1 -0.3026 -0.0026 0.0568 0.0569 0.0548 -0.4488 -0.1011
.3 -0.3028 -0.0028 0.0569 0.0570 0.0549 -0.4492 -0.1008
.5 -0.3030 -0.0030 0.0569 0.0570 0.0551 -0.4495 -0.1004
.7 -0.3033 -0.0033 0.0567 0.0568 0.0554 ~0.4497 -0.1000
.9 -0.3035 -0.0055 0.0570 0.0572 0.0553 -0.4496 -0.09958
QAD .1 -0.3003 -0.0003 0.0575 0.0575 0.0558 -0.4524 -0.0972
.3 -0.2985 0.0015 0.0575 0.0575 0.0559 -0.4542 -0.0990
.5 -0.2952 0.0048 0.0574 0.0576 0.0559 -0.4589 -0.1003
7 -0.2918 0.0082 0.0571 0.0577 0.0559 -0.528 -0.1008
.9 -0.5038 0.0062 0.0566 0.0569 0.0559 ~-0.4541 -0.1000
OLS .1 -0.3038 -0.0038 0.0572 0.0570 0.0558 -0.4503 -0.0978
.3 -0.3118 -0.0118 0.0594 0.0606 0.0581 -0.4615 -0.0938
.5 -0.3312 -0.0312 0.0652 0.0723 0.0651 -0.4882 -0.0890
.7 -0.3752 -0.0752 0.0792 0.1092 0.0854 -0.5476 -0.0823
.9 -0.5029 -0.2029 0.1222 0.2269 0.1886 -0.7741 -0.0732

the MLE of 8; remains fixed and close to the true parameter. The
mean value of B8, for the QAD method remains close to the true
parameter. Indeed, for lower values of p the QAD method is
closer to the generating parameter than the MLE method,
although the differences are very small.”’ The standard deviation
of the estimates remain fixed for both MLE and QAD at around
0.057. Further, the mean reported standard error for both the
MLE and QAD methods are close. In terms of the criteria
reported in Table 4, no real difference exists between MLE and
QAD for the estimation of this parameter.

For the bias criterion, the standard error of the estimate crite-
rion, and their RMSE composite, OLS performed progressively
worse, just as it did with the estimation of 8;. There is a continual
increasing downward bias (away from 0) in the estimation of 8,
and an increase in the standard deviation of the estimates. How-
ever, the problem of underreporting via the mean standard error
is less prevalent for estimating this parameter. Although for small
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TABLES5
Estimates of g, (intercept) in the Full Model for w =121 and 0.1 <
»p <09
Range of
Estimation Values Estimates
Method of p Mean Bias SDE RMSE MRSE Min Max
MLE .1 10.21 0.21 2.80 2.81 2.65 3.69 16.37
.3 10.23 0.23 2.81 2.82 2.71 3.68 16.40
.5 10.26 0.26 2.81 2.82 2.80 3.69 16.48
.7 10.31 0.31 2.82 2.84 2.97 3.76 16.49
.9 10.49 0.49 2.82 2.83 3.51 4.05 16.63
QAD .1 10.05 0.05 2.92 2.92 2.75 3.59 19.36
.3 9.59 -0.41 2.82°  2.85 2.83 3.93 19.62
.5 8.97 -1.03 2.75 2.94 2.94 3.44 19.63
.7 8.20 -1.80 2.76 3.30 3.16 3.01 19.50
.9 7.42 -2.58 3.40 4.27 3.95 2.38 20.08
OLS .1 10.63 0.63 2.97 3.04 2.58 4.13 17.12
.3 12.12 2.12 3.58 4.16 2.69 3.59 19.80
.5 15.26 5.26 4.74 7.08 3.01 3.17 25.47
.7 23.70 13.70 7.43  15.58 3.95 3.84 39.97
.9 76.02 66.02 20.33  69.08 8.74 22.56  120.87

p there is a tendency to underreport, this is no longer true for p =
0.5 and, for higher p, the mean reported standard error is above
the actual standard deviation. The bias in B8, for OLS in the
direction away from 0 is not coupled with a bias that tends to
minimize the report of sample variability. For smaller values of p,
MRSE is smaller than SDE but the differences seem minor. For
the higher values of p, MRSE does not underreport SDE, but the
bias increases quickly. The range of the estimates for 3; tends to
be greater for OLS than for MLE or QAD, but it does contain the
generating parameter at all times, unlike the case for 8.
~ Eventhough the magnitude of the intercept term tends to be of
lower substantive importance than the values of the other
parameters in most estimated linear models, it is worth reporting,
nevertheless. The results are shown in Table 5. The MLE method
targets on the parameter value with a slight upward bias. The
standard deviation of the estimates hardly varies with increases in
the network autocorrelation parameter p. For low values of p
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there tends to be a slight downward bias in the mean reported
standard error relative to the actual standard deviation for lower
values of p, rough parity for p = 0.5, and a slight upward bias for
the higher values of p. For p=0.1, the mean Bofor QAD is close to
the generating value of 10, but declines as p increases. Thus, for
the higher values of p, there is a downward bias. For the range
0.1 < p < 0.7 the standard deviation of the estimates declines
slightly but is close to the MLE figures. For p = 0.9 it jumps
upward (but only at this extreme). The mean reported standard
error for QAD is above the actual standard deviation of the
estimates for p = 0.3. For all p reported in Table 5, the range of
the estimate is higher for QAD than for MLE.

Although the OLS estimate is close to the generating value of
10 for p < 0.1 it rapidly increases with p so that there is a marked
upward bias throughout the range of p>0.1. Even for p=0.3 the
bias is considerable (21%). The standard deviation of the
estimates also rises continually with the increases in p. The mean
reported standard error also rises but it does so much less rapidly,
providing an underreporting of the true variability. However,
only with the extreme value of p = 0.9 does the range of the OLS
estimator not contain the generating parameter.

For the estimation of the intercept, the simulation results point
to the superiority of the MLE method and the inferiority of the
OLS method. However, the behavior of QAD is comparable to
that of MLE (see RMSE figures), with the exception of the high,
and empirically unlikely, values of the network autocorrelation
parameter.

Table 6 reports the estimation results in the simulation for the
estimate of the variance in the disturbance term. For all values of
p, the mean of @ under MLE has approximately a 4% downward
bias relative to the generating value of 121. Although the mean
value of the estimate of & is also biased downward for QAD, the
bias is smaller. The standard deviation of the estimates show that
MLE is slightly less variable than QAD but the differences
between them are small. For the mean reported standard error, a
tendency exists to report a value higher than the actual standard
deviation of the estimate for both methods and to do so by a

Downloaded from smr.sagepub.com at UNIV OF PITTSBURGH on June 29, 2011


http://smr.sagepub.com/

Doreian et al. /| NETWORK AUTOCORRELATION MODELS 173

TABLE 6
Estimates of w in the Full Model Where «w = 121 for 0.1 < p < 0.9

Range
Estimation Values of Estimates
Method of p Mean Bias SDE RMSE MRSE Min Max
MLE .1 116.67 -4.33 19.53 20.00 20.64 76.90 175.14
.3 116.68 -4.32 19.54 20.00 20.76 77.01 175.53
.5 116.90 ~4.10 19.57 19.99 20.96 77.14 175.93
.7 117.05 -3.95 19.61 20.00 21.17 77.24 176.29
.9 117.21 -=3.79 19.66 20.02 21.19 77.22 175.25
QAD .1 120.08 -0.92 20.54 20.56 21.74 74.13 183.23
.3 119.82 -1.18 20.44 20.47 21.70 72.80 180.93
.5 119.00 -2.00 20.23 20.33 21.55 71.96 180.10
.7 118.15 -2.85 19.91 20.11 21.39 72.27 178.83
.9 118.62 -2.38 19.90 20.04 21.48 75.16 179.40
OLS 1 121.33 -0.33 20.86 20.86 21.79 82.55 138.50
3 131.53 10.53 24.11 26.31 23.62 84.93 217.16
.5 165.38 44.38 34.70 56.33 29.70 96.28 303.91
7 286.36 165.36 74.62 181.42 51.14 131.19 574.75
9 1421.6 1300.6 498.41  1392.8 255.33 301.74 2934.0

comparable amount. Further, the ranges of the estimates are
comparable for both MLE and QAD. In effect, the performance
of QAD is virtually indistinguishable from that of MLE,
although the MLE RMSE is always smaller than the RMSE for
QAD.

OLS again fares badly. Here, an upward bias increases
dramatically, with w reaching absurdly high levels for high p. The
standard deviation of the estimates also increases with p, as does
the mean reported standard error, although, for the most part, it
underreports the magnitude of the variability of the OLS
estimator of w. The RMSE rapidly increases with p.

Finally, for the full model, we consider the estimates of p.
These results are shown in Table 7. Obviously, the implicit OLS
estimate of 0 for the network autocorrelation parameter renders it
biased for all nonzero values of p and this bias increases
throughout the range of p. Equally obvious is that no sample
variability of the estimate exists and an RMSE measure is
composed of the bias only. However, this bias component for
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TABLE 7
Estimates of o in the Full Model for v =121 and 0.1 < p < 0.9

Range
Estimation Values of Estimates
Method of p Mean Bias SDE MRSE Min Max
MLE .1 0,0920 -0.0080 0.0251 0.1454 0.0700 0.2517
.3 0.2914 -0.0086 0.0270 0.1279 0.2780 0.4219
.5 0.4917 -0.0083 0.0152 0.1038 0.478 0.5868
.7 0.6930 -0.0070 0.0088 0.0724 0.6251 0.7479
.9 0.8957 -0.0043 0.0027 0.0311 0.8925 0.9112
QAD .1 0.0996 -0.0004 0.2087 0.1867 -0.4666 0.5406
.3 0.3729 0.0720 0.1713 0.1627 -0.1129 0.7127
.5 0.6083 0.1083 0.1260 0.1300 0.2236 0.8430
.7 0.7978 0.0978 0.0790 0.0890 0.5517 0.9394
.9 0.9375 0.0375 0.0326 0.0384 0.8489 0.9660

OLS will completely outweigh both the bias and standard
deviation components of MLE and QAD, rendering OLS a poor
estimator of p. In terms of the mean value of p over the
simulations, both MLE and QAD work well. Throughout most
of the range the slight downward bias of the MLE is smaller in
magnitude than the slight upward bias of QAD. However, when
we consider the sample variability of the estimates, measured by
SDE, the MLE method is much preferable to that of QAD.
Although for both MLE and QAD the standard deviation
measure drops, surprisingly, with increases in the value of p, the
variability is higher for QAD relative to MLE. (For p = 0.1 it is
around 8 times higher and the discrepancy has a factor of 14 for
p = 0.9.) The RMSE criterion shown in Table 7 indicates the
marked supremacy of the MLE method over the QAD as far as
estimating the network autocorrelation parameter is concerned.
The two methods are less distinguishable when the MRSE is
concerned. Both overreport relative to the actual standard
deviation, but the MLE method does so to a far greater extent.
The marked upward bias in the estimate of the sample variability
renders the MLE approach more conservative than is perhaps
warranted. For p = 0.1 it overreports by a factor of 6 and by a
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factor of 12 for p =0.9. In terms of the range of the estimates both
the MLE and the QAD methods bracket the true generating
parameter. However, consistent with the results on the standard
deviation of the estimates, the MLE bracket is much tighter than
that of QAD. In fact, for the lower values of p, the QAD range
seems distressingly large.

The results for the runs with w set to 25, 49, and 81 are reported
in two ways: (1) with each batch considered separately and (2) all
batches considered together. As is expected from the mathe-
matical argument presented earlier, the bias for OLS is com-
pletely unaffected by the variance of the disturbance term: The
same pattern of increasing bias with increasing values of p for
OLS is found in each batch. The standard deviation of the
estimates increases as w increases in the simulation runs for each
estimation method, but the pattern and relative behavior of these
estimates is much the same for the other values of w as for the case
of w = 121. The mean reported standard error also increases with
o but—in relation to the standard deviations of the estimate—the
same relative pattern as for w = 121 is found. In short, the relative
behavior of MLE, QAD, and OLS is unchanged with changes of
w, but the numerical differences are magnified with increasing w.

When all the runs, with p 7 0, are considered together, some
crude quantitative descriptions can be established. The first panel
of Table 2 provides the right-most swarm of data points in Figure
1, where the MLE mean reported standard error has been plotted
against the MLE standard deviation of the estimate for 8;. The
scatter plot is, in large measure, driven by the four swarms
corresponding to the four values of the disturbance term variance
(w). Within each vertical swarm the values are ordered according
to p. If the mean reported standard error is regressed on the
standard deviation of the estimates and p we have:'®

MRSE = 0.007 + 1.045 SDE + 0.006 p R? =0.98
(0.001) (0.033) (0.001) [17]

From equation 17, for which fitted values are close to the actual
MRSE, we see MRSE is always above SDE and the gap grows
with increasing p.
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Figure 1:  Plot of MRSE against SDE, Full Model for 84 with w = 121

For QAD, the plot of MRSE against SDE has the same general
form but the numerical values for the regression'’ differ:

MRSE = 0.841 SDE + 0.009 p R% =096
(0.042) (0.002) [18]

This numerical summary, for all w, is reflected in each w batch.
For the second panel of Table 2, we see that MRSE is smaller than
SDE and the gap narrows with increases in p.

For OLS no distinct swarms of points are associated with
different values of w as the ranges of MRSE and of SDE for
different w overlap. Nor does p, treated as a regressor, have an
appreciable effect on MRSE. The following is a crude curvi-
linear'® description:

MRSE = 0.006 + 0.966 SDE - 1.673 (SDE)’ R?> =093
(0.007) (0.165) (0.688) [19]
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Taking partial derivatives, IMRSE/JdSDE = 0.966 - 1.673 SDE
so that the gap between the OLS mean reported standard error and
the true standard deviation of the estimates narrows as the latter
increases (which is driven by w and p).

In this fashion a crude quantitative statement of the relation
between the mean reported standard error and the true standard
deviation of the estimates can be found for each estimation
method and each estimated parameter.'” This quantitative state-
ment, together with the statement that the same general qualita-
tive behavior as that found in Tables 2 and 4 through 7 is found
for the runs with the different w, provides a sufficient summary of
the results, other than inference, of all the simulations featuring
the full model.

Inference Decisions with Network Autocorrelation

We consider inference and deal with two kinds of null
hypothesis: (1) Ho: 6 = 0 and (2) Ho: 6 = 0gn. Throughout this
discussion we use a = 0.01 as a significance level.

From the viewpoint of testing whether or not a variable is
significant in a linear equation—that is, the first kind of null
hypothesis—the results of the simulation for the full model are of
little interest. Consider any parameter other than p. As can be
seen by the small nature of the bias for MLE and QAD, and—
relative to the parameter estimates—the small measure of the
mean reported standard error of the estimates, all runs show any
parameter to be significantly different from 0. For OLS, the
biases are away from zero and, as the OLS report of the standard
errors are biased downward, it, too, reports significant 8;. But it is
inappropriate to draw any conclusions, as the parameter values
were all chosen to be large enough so as to ensure that they would
be detected as nonzero. Issues of inference when one of the
generating parameters may really be 0 becomes the crucial area in
which to explore questions of inference. We deal with this shortly.

A second and, herein, more important question has to do with
the actual value of the estimated parameter. Given the appropri-
ate specification of a linear model, the values of the estimated
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parameters are important. The extent to which the obtained
numerical values can be taken seriously depends on how close to
the true parameters we can expect them to be. If we know they are
likely to be reasonably close to the true value, our confidence in
them increases. This can be formulated as an inferential question.
If we specify as a null hypothesis the actual parameters used to
generate the data, we should not be able to reject such a null
hypothesis in most instances. To the extent that an estimation
method, and its coupled inference procedure, leads to the
rejection of the second kind of null hypothesis, the whole issue of
the correct estimation of the value of the parameter is called into
question. Stated differently, if an estimation procedure returns
estimates of parameters (together with their standard errors) that
lead frequently to the rejection of the null hypothesis stating that
the parameter has the generating value, we can have little
confidence in the accuracy of the estimation procedure. With this
issue in focus we consider Table 8.

This table shows the count of the correct nonrejection of the
null hypothesis stating that parameter values are those used in the
generating procedure. This is shown for all values of p in the
simulation range and all values of disturbance term variance. We
seek to establish, for each estimation procedure, if the quality of
the inference decisions declines as p ranges from 0t0 0.9 and as w
ranges from 25 to 121. The broad result is that MLE and QAD do
not appear to decline in inference performance as p increases,
whereas OLS does (in a spectacular fashion). Second, both MLE
and QAD do not decline in quality of inference decisions as w
increases and, strangely, the quality of the OLS decision appears
to improve as the disturbance term variance increases. However,
this improvement is not sufficient to offset the severe degradation
in the quality of the inference decision for OLS as p increases.

We consider first the coefficient 8. When p is 0 there is not
much difference between MLE and OLS—or at least the differ-
ences between them may be attributable to random sources.
MLE, according to this table, will be in error 1 in 100 times,
whereas OLS will be in error 5 times in 100 trials. QAD may be
slightly inferior to either of the other two methods insofar as it

Downloaded from smr.sagepub.com at UNIV OF PITTSBURGH on June 29, 2011


http://smr.sagepub.com/

Doreian et al. /| NETWORK AUTOCORRELATION MODELS

TABLE 8
Count of Correct Nonrejection of Hy : 6 = 0 4o, for Full Model

(.3,-.3,10)

179

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

w=25 w=49 w=81 w=121

MLE QAD OLS |MLE QAD OLS | MLE QAD OLS |MLE QAD  OLS
99 92 95 99 90 95 98 89 95 98 87 95
99 93 67 99 93 81 98 89 81 98 85 86
- 99 94 2 99 90 17 99 89 29 98 88 47
99 92 0 99 88 0 99 87 2 98 85 4
100 92 0 99 89 0 99 84 0 99 80 0
99 92 0 99 90 0 99 89 0 99 86 0
93 94 93 93 93 93 93 93 93 93 93 93
93 94 93 93 94 93 93 94 93 93 93 94
93 94 95 93 94 94 93 94 93 93 94 95
93 95 93 93 95 93 93 95 95 93 95 95
94 95 91 93 95 90 93 95 91 93 95 92
93 94 100 93 95 97 93 95 96 93 95 96
93 92 93 93 93 93 93 95 93 93 94 93
93 94 87 93 94 89 93 93 89 93 93 90
93 94 63 93 94 71 93 94 74 93 94 81
95 95 19 95 95 33 94 93 49 94 93 54
98 94 1 94 95 5 96 94 14 94 93 22
100 94 0 99 95 0 99 95 0 98 95 1
93 94 94 93 94 94 93 94 94 93 93 94
93 95 95 93 94 95 93 94 95 93 94 94
93 95 92 93 95 95 94 96 97 94 96 97
93 96 14 94 96 50 94 96 73 94 96 98
93 96 0 94 96 1 94 96 2 94 96 7
93 95 0 94 95 0 94 95 0 94 95 0

leads to the incorrect rejection of the null hypothesis around 10
times out of 100. There is also mild evidence (for this parameter
only) that the quality of the decision making for QAD may
decrease as w increases. This is reasonable for—with p = 0—the
QAD essentially includes an irrelevant variable that raises slightly
the estimate of the standard error of the coefficient estimates. As
pincreases, the error rate of the MLE remains around 1 in 100 for
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all values of w. As p increases, the error rate for QAD is around 8
times in 100 for w = 25, around 10 in 100 for w = 49, around 11
times in 100 for w = 81, and around 12 in 100 for w = 121. If
anything, there is a slight increase in the error rate for QAD
inference for p = 0.5 and 0.7, although these may themselves be
random departures from a fixed pattern. For OLS, however, the
rate of correct inferences drops sharply as p increases. Already by
p =0.1, for w = 25 there are only 67 correct inferences out of 100.
By the time p reaches 0.3 the number of correct inferences is only 2
out of 100 and for the higher values of p a correct inference never
exists concerning the null hypothesis of B being set to its
generating value. There are similar declines in the rate of error
making for OLS for the other three values of w, although the rate
of decline is not as sharp, as p increases.

For the estimates of 3; we predicted much more stability on the
basis of the earlier results; this is borne out in the second panel of
Table 8. Essentially, the error rate for all methods, over all values
of p and w, is around 7 times in 100 for Ho: 82 = -0.3. The stability
of this error rate across all values of p and w is striking and is in
stunning contrast to the results for the other slope parameter.

As far as inference affecting the intercept is concerned, the
pattern for MLE and QAD is similar to that of 8, with perhaps a
slightly higher rate of error making for MLE and a slightly lower
rate for QAD. For both MLE and QAD, the inference decision is
wrong about 7 times in 100 under all combinations of p and w
displayed in the table. For OLS, however, the numbers of correct
inferences concerning By decline markedly as p increases, for all
values of w. For higher values of w, there tends to be a slower
increase in the rate of incorrect inference as p increases but, for all
w, they are alarmingly high. Similar results hold true for the
estimation of w, with MLE showing 7 wrong inference decisions
out of 100 for all p and w, with QAD showing slightly fewer
incorrect decisions. Again a decline in the number of correct
inferences made under OLS occurs. However, the decline is much
less rapid than is the case for 8; and B,. For low values of p,
through 0.3, OLS is comparable to both MLE and QAD.
Thereafter the rate of correct inference drops sharply with
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increases in p, except for w = 121, for which the sharp drop is
delayed until after p = 0.5.

In summary, the implication of the results displayed in Table 8
is striking. At least for the combination of parameters considered
in these simulations, OLS is inadequate in rendering correct
decisions concerning the actual generating values, whereas MLE
and QAD perform much better and with comparable quality.”
Of course, social science researchers are seldom in a position to
test null hypotheses positing nonzero values for parameters. We
know already from the mathematical argument presented above
that the OLS estimators would be biased, and analytically, we
could provide statements concerning the reported standard
errors. But those separate results could not be combined readily.
The simulations show in this context that the OLS values tend to
be not only different from the generating values, but also
sufficiently far away from the true values that OLS reports them
as significantly different from the generating values. An esti-
mation procedure focusing on the wrong target, having large
sample variability, and leading to many wrong inferences merits
no confidence whatsoever in the accuracy of the estimates it
provides.

MODELS WITH ONE ZERO SLOPE COEFFICIENT

Parameter Estimation

Loftin and Ward (1983) present an example in which OLS
returns a significant coefficient for a specific variable and an
estimation method incorporating network autocorrelation does
not. In our results for the full model we saw that the OLS estimate
of B: was biased upward, whereas the OLS estimate of the
standard error was biased downward. Together the two biases
may lead to mistaken inference concerning the presence of 8 in
an equation. A reasonable speculation, then, is that such a
mechanism was at work in the example cited by Loftin and Ward.
If this is the case, we need to know the likelihood of this outcome.
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TABLE 9
Estimates of 54 in the Model with 81=0;,w=121Tand 0.1 <p< .9

Range
Estimation Values Mean of Estimates
Method of p By SDE MRSE Min Max
MLE .1 -0.0024 0.0399 0.0372 -0.088 0.0757
.3 -0.0027 0.0402 0.0375 -0.1094 0.0759
.5 -0.0034 0.0407 0.0378 -0.1110 0.0760
.7 -0.0045 0.0418 0.0384 -0.1151 0.0760
.9 -0.0067 0.0466 0.0399 -0.1325 0.0750
QAD .1 -0.0005 0.0400 0.0385 -0.1238 0.0826
.3 0.0049 0.0368 0.0388 ~0.1087 0.0861
.5 0.0108 0.0333 0.0391 -0.0910 0.0876
7 0.0170 0.0301 0.0395 -0.0739 0.0854
.9 0.0231 0.0302 0.0412 -0.0764 0.0904
OLS .1 -0.0062 0.0424 0.0368 -0.1281 0.0761
.3 -0.0180 0.0512 0.0379 -0.1706 0.0779
.5 -0.0368 0.0666 0.0412 -0.2427 0.0879
.7 -0.0745 0.1002 0.0494 -0.3973 0.1279
.9 -0.2140 0.2326 0.0781 -1.0095 0.3240

We now consider, in sequence, two further sets of simulation
runs that address this issue. The first of these has data generated
in exactly the same fashion as for the full model, only the
parameter B, is set to 0. The second simulation has the same
generation procedure, only in this instance 8, rather than 8, is set
to 0. We will describe briefly*' the results in terms of bias and the
standard deviation of the estimates, comparing them to the
results shown in Tables 2 and 4 through 7.

The only table we present for this series of runs is Table 9,
which gives the estimation results for the parameter, 81, set to 0.
The mean value of 8; targets on the generating value of 0 (with a
very small downward bias) for MLE. The discrepancies between
the mean B, and the generating value of 0 are larger than the
corresponding bias in the full model. For p < 0.3, QAD is on its
target value. The upward bias in the QAD estimates is smaller
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than the corresponding downward bias for QAD in the full
model. As in Table 2, this bias increases with p. Using the results
of the earlier mathematical argument, we can establish the
magnitude of the bias for OLS. From equation 12, the following
are generated:

p=.1 3 5 i 9
B,  -0.0046  -00167  -0.0358  -0.0751 -2245
B, -03010 -03080  -03249  -0.3614 -4568
b, 10.12 10.58 11.49 13.33 17.99

For B, the bottom panel of Table 9 corresponds to these figures.
For the parameter set to 0, a downward bias appears, but it is
much smaller than the corresponding upward bias in the full
model.

The standard deviation of the MLE estimate for this parameter
configuration is virtually the same as for the full model, at least
for 0.1 =< p = 0.7. A small upward drift occurs in the standard
deviation that was not present in the full model. The standard
deviations of the QAD estimate are down considerably compared
to the corresponding QAD values for the full model. In fact, the
QAD estimates shown in Table 9 have lower standard deviations
than the MLE method. There is another reversal as well: For
values of p > 0.1, the mean reported standard error for the QAD
approach is above the actual standard deviation of the estimate,
whereas for the MLE approach the mean reported standard
errors are below, and underreport, the actual standard deviation
of the estimate. Except for lower values of p, the QAD range of
the estimates is somewhat lower than the MLE range. Thus, in
this instance, QAD outperforms MLE. OLS still performs worse
than both QAD and MLE. However, the standard deviation in
the OLS estimates is unchanged when compared to those of the
full model. The mean reported standard errors are also compa-
rable to those in Table 2, with the exception of the case in which
p = 0.9. The range of the OLS estimates is considerably broader
than the range of either QAD or the MLE approach. Asthereis a
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consistent bias with OLS and as the mean reported standard error
underreports the true standard error, there will be a bias in the
direction of seeing parameter estimates for 8; as significant when
the generating value is 0.

With minor numerical variations,’* the results for 8, are the
same as those reported in Table 4. Differences emerge for So. For
0.1 =< p =0.7 the mean estimates of MLE are close to the results
shown in Table 5, but the mean estimate for 8o with p = 0.9 is
closer (10.06) to the target value. Under MLE, the standard
deviation of the estimates tends to be higher than in the full
model, but the mean reported standard error is somewhat
smaller. The two differences are such that, for this model, the
mean reported standard error for MLE underreports the actual
standard deviation of the estimates. Whereas the standard
deviation of the estimates for MLE was constant throughout the
range of the values for p, they tend to increase here with the values
of p and the range of the estimates increases. For QAD a
downward bias still exists, but it tends to be smaller for values of
p < 0.3. The standard deviation of the estimates for 8o under
QAD tends to decrease with p, whereas the mean reported
standard error increases (the latter being the same pattern as for
the full model). Thus for low p the QAD method underreports the
standard errors although for higher p it overreports them.

In terms of estimating the intercept, the performance of OLS is
much better in this model than in the full model. OLS shows less
bias (see above). The actual standard deviation of the estimates is
unchanged and the mean reported standard error is even less than
for the full model. Thus, for OLS, the decrease in the magnitude
of the upward bias is offset by an increase in the downward bias of
the reported standard error.

Differences also occur for the estimation of the variance of the
disturbance term. For MLE there is still the downward bias but
the magnitude of the bias decreases as p increases. Except for
p = 0.9, the standard deviation of the estimates under MLE are
about the same as reported in Table 6; similar results are found
for the mean reported standard error. For QAD the downward
bias is larger than for the full model, but both the standard
deviation of the estimates and the mean reported standard error
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remain the same as shown in Table 6. For the estimation of w,
OLS is improved when compared to the full model. The bias is
smaller, the standard deviation is considerably smaller, especially
for higher p, and the mean reported standard error is also lower
(but still underreports the true standard error by a large amount).
The set of simulations in which 8, was set to zero is much easier
to describe: few changes. For OLS, the mean estimates follow
closely the theoretically established results (from equation 12):

p=.1 3 S i 9

B, 0.3267 0.4008 0.5261 0.7881 1.756
B, -0.0006  -0.0022  -0.0055  -0.0145 0.0512
B, 11.45 15.70 23.71 43.80 159.0

This apart, the data for B, are similar to the figures in Table 2. For
B2, of course, the target value is 0 and all estimators target on it
(including OLS). The variability measures are changed little.
With MLE and OLS the standard deviations of the estimates of
the intercept do not change, but for QAD they rise. The mean
reported standard errors rise for all methods. The pattern of
over- and underreporting is the same as in Table 5. For w, there is
no real change with B8, = 0 compared to Table 6 except when
p = 0.9; similar results are found for p.

An overall summary of the runs having one zero slope
coefficient is provided in Table 10, where the RMSE is reported
for each coefficient for the two models with w = 121. The left panel
deals with the case having B8, = 0, and the one on the right deals
with 8, =0. We consider the former first. For the estimation of S,
QAD outperforms MLE, with OLS trailing behind both. For 8,
the RMSE criterion orders the methods as MLE, QAD, and
OLS, except for p = 0.9, when QAD performs better than MLE.
For p = 0.7, MLE and QAD are very close. For estimating o,
QAD outperforms MLE for p < 0.5. Except for p = 0.1, both
MLE and QAD outperform OLS. Estimation of the disturbance
term variance shows MLE and QAD as very close (except for
p=0.9) and both outperform OLS. With the model having 8,=0,
MLE is clearly superior to QAD and OLS for estimating 81; MLE
and QAD are close when estimating 8., but QAD does have a
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TABLE 10
Root Mean Squared Errors (RMSE) for Models with one Zero Slope
Caefficient: 0.1 < p < 0.9and w =121

Regime with B1=0 Regime with B2=0
Parameter [ MLE QAD OLS MLE QAD OLS
81 .1 0.0400 0.0400 0.0428 0.0403 0.0821 0.0493
.3 0.0403 0.0371 0.0543 0.0405 0.0879 0.1117
.5 0.0408 0.0350 0.0761 0.0406 0.0989 0.2348
.7 0.0420 0.0346 0.1246 0.0406 0.1043 1.4989
.9 0.0471 0.0380 0.3161 0.0404 0.0842 1.4850
[ .1 0.0568 0.0579 0.0573 0.0569 0.0570 0.0573
.3 0.0570 0.0577 0.0602 0.0578 0.0566 0.0595
.5 0.0571 0.0577 0.0702 0.0569 0.0560 0.0655
.7 0.0576 0.0583 0.0997 0.0569 0.0555 0.0804
.9 0.0679 0.0580 0.1948 0.0570 0.0558 0.1306
Bo .1 2.83 3.12 2.91 2.79 4.15 ’ 3.32
.3 2.85 2.93 3.57 2.79 4.53 7.69
.5 2.89 2.74 4.95 2.79 5.44 14.55
.7 2.97 2.60 8.07 2.78 6.54  + 15.57
.9 3.82 2.62 21.48 2.74 7.56 14.94
w .1 |20.04 20.46 20.68 20.01 20.86 20.88
.3 {20.02 20.44 24,65 20.02 20.63 25.84
.5 {20.00 20.58 45.16 20.00 20.36 53.16
.7 [20.41 20.78 118.23 20.00 20.09 182.46
.9 [68.99 ~ 20.74 527.15 20.00 20.17 171.58

slightly smaller RMSE; MLE is superior for estimating Bo; and
both are close for estimating w, with MLE having the slightly
smaller RMSE. In the main, OLS trails, with only two
exceptions.

Inference

We now consider inference again. Table 11 shows the counts of
correct inference decisions when the null hypothesis is Ho: 6 = Ogen,
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TABLE 11
Count of Correct Inferences for H, : 6 =0 gen

Model
B = (10, 0.3, 0) g = (10, 0, -0.3)
w = 81 w= 121 w = 81 w= 121

Parameter| p | MLE QAD OLS MLE QAD OLS MLE QAD OLS MLE QAD OLS
81 11 99 89 81 98 86 83 96 95 94 96 95 92
30099 91 21 99 89 33 96 97 83 96 98 86

.51 99 86 0 99 84 2 97 99 70 97 99 74

.71 99 81 0 99 79 0 97 98 54 97 99 58

91 99 87 0 99 86 0 92 97 28 93 98 45

B2 1) 93 93 94 93 93 94 93 94 94 93 94 94
3] 93 93 95 94 94 95 93 96 96 93 95 94

50093 93 96 93 93 95 93 95 93 93 95 94

.71 93 93 98 93 93 98 93 95 84 94 95 89

91 93 94 100 93 93 100 92 94 71 91 95 77

Bo .11 93 95 87 96 94 88 93 93 91 93 93 91
.31 93 96 33 98 94 41 93 94 87 93 94 87

50 93 92 1 100 91 5 93 95 72 93 96 71

70 93 90 0 100 87 0 93 96 59 93 97 72

91100 91 0 100 89 0 90 98 43 91 97 40

w 1) 93 94 94 93 94 94 94 93 94 94 93 94
31 93 95 96 93 95 96 94 94 97 94 94 97

.51 93 95 68 94 95 77 94 96 82 94 95 85

.71 93 93 3 94 94 8 94 94 21 94 93 29

91 93 95 0 94 94 0 91 95 (] 92 94 1

(w = 81,121 with either Bl of B2 set to zero)

where 0., denotes the generating value of the parameter, 6. The
significance level throughout has been taken as 0.01. Of particular
interest are those results for Ogn = 81 = 0 and ;e = B2 = 0. Four
parameters are considered in Table 11 (81, B2, Bo, and w) and two
models, each with a zero slope parameter, for which there were
runs for w = 81 and w = 121 leading to the four vertical panels in
Table 11.

Of interest is the extent to which inference decisions based on
any of the three methods of estimation are incorrect. Our
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attention will be given primarily to the slope parameters as
decisions concerning them have substantive importance. Con-
sider first the two right-hand panels of Table 11. As the data
generated by these models came from a regime where the first
slope parameter, Bi, was set to 0, we start by considering the
inferential decisions concerning the presence of the corresponding
variable in the equation. For p = 0.1, with the disturbance term
variance set at 81, no differences appear between the decisions
made by each of the estimation procedures. Roughly five times in
a hundred, a mistaken inference will occur under all three
methods. However, once the value of the network autocorrelation
parameter moves away from this low value, the performance of
OLS deteriorates steadily. For p = 0.3, there are already 17
mistaken inferences in 100, whereas for p = 0.5 there are 70. For
higher values of p the performance of OLS is even worse. The
performance of MLE is not affected by increases in p, except for
p =0.9, when 8 mistaken inferences occur out of 100. QAD fairs
well; if anything, it performs slightly better for higher values of p.
Much of the same pattern holds when w = 121: OLS steadily
deteriorates, and MLE and QAD perform robustly. The message
is clear: Even with small to moderate amounts of network
autocorrelation, OLS should not be used to make inferences
concerning the presence of X, in the linear equation. For
configurations such as this, the kind of incorrect inference
detected by Loftin and Ward (1983) is very likely. QAD and MLE
both perform well, so the insignificance of population density for
fertility rates reported by Loftin and Ward (when they use
methods designed to deal with network autocorrelation) is
consistent with this part of the simulation. Staying within the
same regime of data generation, we see that inference concerning
the parameter not set” to 0 (8,) is also affected, though to a lesser
extent. For moderate p (p = 0.5) OLS does perform comparably
to both MLE and QAD. However, for higher values of network
autocorrelation, the quality, or accuracy, of the OLS inferences
begins to deteriorate. On the other hand, the performance of
MLE and QAD is robust throughout the range of p. However, to
the extent that most instances of empirical network autocor-
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relation do not have values of p higher than 0.5, it could be argued
that OLS performs well for the lower values of p and this is
sufficient (for a configuration relatively immune to this kind of
network autocorrelation).

The same general pattern is repeated for inferences concerning
the intercept: Both MLE and QAD perform robustly throughout
the range of p, but OLS leads to many incorrect inferences as the
network parameter rises. It should be noted that, if anything,
QAD performs better than MLE, at least in terms of the count
kept of correct inferences. It should also be noted that MLE
seems more affected at the extreme value of p = 0.9. Finally, for
the right-hand panel of Table 11, when we consider inferences
concerning w we see the same pattern. The number of incorrect
inferences with OLS rises dramatically with increases in p while
the number of incorrect inferences under MLE and QAD remains
fixed.

All in all, for this particular regime of data generation, any
inference based on ordinary least squares seems fraught with
hazard. This is the case especially when inferences are made
concerning the presence or absence of the X variable for which the
generating parameter is set to 0 and network autocorrelation is
present. Inference concerning the true value of the other slope
parameter in this regime is not threatened, at least for small or
moderate values of p.

Now consider the left-hand panel of Table 11, where B; is the
parameter set to 0. The results here are more dramatic. Even
though B, was set to 0, the first horizontal panel of Table 10
makes it clear that inference concerning the value of §8; has been
devasted for OLS. Even for p=0.1, OLS performs poorly, leading
to approximately 18 incorrect inferences in 100. By contrast,
MLE has 1 or 2 incorrect inferences in 100, and QAD has about
12 incorrect inferences in 100. A clear ordering can describe the
count of inference decisions for p = 0.1: MLE is preferable, QAD
is suspect,”* and OLS is very suspect. Poor as the OLS perfor-
mance is for p = 0.1, it deteriorates markedly as p increases.
Already for p = 0.3, there are 79 incorrect inferences in 100 when
o = 81 and 67 incorrect inferences in 100 when w = 121. By the time
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we reach p = 0.5, in the first horizontal panel of Table 11, we find
OLS incapable of returning a correct inference. Although the
performance of OLS deteriorates with increases in p, both MLE
and QAD perform robustly, returning the same number of
correct and incorrect inferences as they did for p = 0.1. The
evidence in this panel further suggests that MLE is preferable to
QAD.

When we consider inference about the parameter (82) set to 0,
we find no problems with any method. All three methods perform
well and their performance is robust across increasing values of p.
If anything, OLS performs better than either MLE or QAD, with
the suggestion that it performs better with increases in p (at least
with this parameter in this regime). For both the intercept, Bo, and
w, MLE and QAD perform robustly and adequately. With MLE,
mistaken inference results 7 times in 100 and for QAD the result is
about the same, although there is less consistency for QAD
through different values of p. For these parameters, OLS is again
inadequate. :

Qualitatively, it is easy to summarize these results. Even
though OLS does not lead inevitably to the inferential inclusion
of a variable in a linear relation when in truth it does not belong
there, it is still prone to do so. To the extent that there is interest in
the precise parameter values it would appear, from the results
shown in Table 11, that OLS is very unreliable. If at some point in
the future we are concerned with testing models where the null
hypotheses are more interesting than a hypothesis specifying a
zero value for a parameter, it will be necessary to have reliable
estimation procedures in addition to accurate estimates of the
parameters. Both objectives are compromised in a major way by
reliance on ordinary least squares. It is more difficult to state a
recommendation concerning the relative merits of MLE and
QAD. In many instances they do perform comparably, and much
of the time QAD is perfectly acceptable. However, given that
there are occasions where it does perform less effectively than
MLE, a conservative recommendation is to use the maximum
likelihood procedure rather than this quick and dirty one.
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ESTIMATING THE
NETWORK AUTOCORRELATION PARAMETER

When attention is focused on the ability of MLE, QAD, and
OLS to estimate 8 and w, the simulation results show OLS as
clearly inferior. Overall, MLE performs better than QAD, but in
many situations they perform comparably. Moreover, there are
instances in which QAD performs better than MLE (but in these
instances the difference is always small). One variable affecting
some of the properties of these estimators is the extent of network
autocorrelation. As MLE and QAD both provide estimates of p,
we consider how well they do this.

We have evidence already in Tables 1 and 7. As shown in Table
1, both MLE and QAD target on p = 0 when there is no network
autocorrelation, with MLE being slightly closer than QAD. In
terms of the standard deviation of the estimates, MLE is vastly
superior to QAD: Its SDE is 0.027, compared to 0.222 for QAD.
Obviously, the RMSE for MLE will be much smaller than for
QAD, as both components of the root mean square error are
smaller for MLE. Although the standard deviation of the
estimate for QAD is 0.222, the mean reported standard error
(MRSE) is 0.196. Having an estimator underreport the extent to
which it varies across all possible estimates—given a particular
parameter configuration—is undesirable. By contrast, having
MLE overreport the MRSE can be viewed as an improvement
over QAD. Unfortunately, the extent to which MLE overreports
its sample variability is considerable, with the RMSE almost 6
times as high as the SDE. Although avoiding cavalier inferences,
this surely is laying the foundation for an inference that is much
too conservative.

When regimes involving network autocorrelation are consid-
ered (see Table 7), the same pattern is evident.”’ The standard
deviation of the estimates, for each value of p, is much higher for
QAD than MLE. Although the mean reported standard error of
QAD is smaller than the SDE for small value in p and larger for
higher values of p, it is always relatively close to the actual
standard deviation of the estimates. This is not so for MLE, where
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there is, for all p, a wide gulf between the true SDE and the
established MRSE.

The foregoing estimation properties of MLE (i.e., bias and the
standard deviation of the estimates) indicate that it is superior to
the QAD approach. Except for p = 0.1, the MLE estimate is
always closer to the generating value of p used in the full models.
Consistent with the smaller standard deviation of the estimate,
the range of values for the MLE estimate is much smaller. The
MLE estimates target tightly around their central value, and the
QAD estimates spread widely. For both estimators, the variabil-
ity across runs diminishes with increasing values of p. For the
smaller values of p the quick and dirty approach provides alarm-
ingly wide ranges for its estimates of the parameter. It is only for
values of p in excess of 0.5 that the variability of the QAD
estimates can be viewed as reasonable. From the evidence con-
tained in Table 7 it is clear also that MLE is preferable to QAD for
estimating the value of the network autocorrelation parameter.
However, we can push this further and look more closely at the
consequences for the actual inference decisions made when using
these estimation strategies.

Table 12 provides further evidence for the superiority of MLE.
There are two panels in Table 12; the first deals with inference for
the full models and the second with inferences when one of the
slope parameters has been set to 0. This table provides the count
of correct inferences for the null hypothesis specifying no network
autocorrelation. Qualitatively, we need to distinguish the situa-
tions in which there is no network autocorrelation from those in
which there is such an effect. The first row of the upper panel gives
the correct nonrejections of this null hypothesis when no network
autocorrelation was used to generate the data. Without excep-
tion, the MLE procedure leads to correct inferential decisions,
although this is not true for QAD, which rejects this null
hypothesis between 5 and 8 times in 100. There may be several
reasons for this difference. First, some of the incorrect decisions
under QAD may occur simply by chance. After all, the number of
incorrect rejections of the null hypothesis is around some of the
conventional significant levels used. A second factor may be the
great variability in the QAD estimates. As there are extreme
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TABLE 12
Counts of Correct Inference for H, : p = 0 for Regimes with Differing
Disturbance Term Variance, w

Disturbance Term Variance and Estimation Method

w = 25 w = 49 w = 81 w = 121

Values
of p MLE QAD MLE QAD MLE QAD MLE QAD

0 100% 95% 100* 96* 100%* 94*% 100%* 92%
0.1 0 17 0 11 0 12 0 6
0.3 100 93 100 78 100 70 98 66
0.5 100 100 100 92 100 100 100 99
0.7 100 100 100 90 100 100 100 100
0.9 100 100 100 100 100 100 100 100

(a) Full Models

Model, Disturbance Term Variance and
Estimation Method

B2=0 B1=0

w = 81 w = 121 w = 81 w = 121
Value
of p MLE QAD MLE QAD MLE QAD MLE QAD
0.1 0 13 0 13 1 14 0 13
0.3 100 61 100 42 100 58 100 58
0.5 100 100 100 98 100 91 100 67
0.7+ 100 100 100 100 100 100 100 76

(b) Models with One Slope Parameter Zero

+ For p = 0.9 for Bi = 0, each cell entry is 100

*For p = O the correct decision is to not reject Ho;otherwlse the correct declsion Is
to reject Ho'

estimates (see Table 1), it would be surprising if they did not lead
to the rejection of this null hypothesis. Third, the large over-
estimate under MLE of the sample variability means that even the
extreme estimates are not large enough-—in relation to the very
conservative estimate of the standard error—to lead to rejection
of this null hypothesis.

Panel a of Table 12 suggests that not until p = 0.3 is it possible
for either estimation strategy to detect values of p significantly
different from 0. For p = 0.1 neither method leads to frequent
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rejection of the incorrect null hypothesis: MLE never does so, and
QAD fares a little better. For such a small value of p this should
not be too surprising. For p = 0.3, a value large enough to permit
frequent rejections of the wrong null hypothesis p = 0, we see a
considerable difference between MLE and QAD. For p < 0.3
there is only one instance in which the MLE does not return 100
correct inferential decisions out of 100: for w = 121, and p = 0.3.
Otherwise, the MLE estimation method is always correct with
regard to this particular inference. ** The QAD performance is
always worse relative to MLE, and QAD decisions deteriorate
with increases in disturbance term variance.

A similar pattern appears when we consider the models
generating data having one of the slope parameters set to 0. These
results are shown in panel b of Table 12. For p = 0.1, the MLE
approach does not permit discriminating this value from 0,
whereas the QAD does around 13 times in 100. Once p reaches
this threshold value of 0.3, the MLE approach tends to support
the inference that the true value of p is not 0. By contrast, the
QAD approach permits only the correct inference between 42
times in 100 and 61 times in 100. Even by the time the network
autocorrelation parameter reaches 0.5, there are still instances
with B, set to 0 in which the QAD approach does not permit the
rejection of the incorrect null hypothesis. Undoubtedly, this is
due to some of the extremely low estimates returned by this
method. When B; is set to 0 the performance of QAD is
completely inadequate in correctly rejecting the null hypothesis
specifying no network autocorrelation. Even for p as high as 0.7,
with disturbance term variance of 121, there are still 24 incorrect
decisions in 100 under QAD.

In summary, QAD is largely inadequate for determining the
presence of network autocorrelation. This was suggested in panel
aof Table 12 for moderate values of p and is emphasized in panel
b of Table 12 more or less for all values of p. Obviously, it is
difficult to generalize from a restricted number of simulation
runs, but the evidence here points to the inadequacy of QAD. It
should be pointed out, again, that MLE looks perhaps a little
better than it should because of the tendency to overestimate the
sample variability of p.
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TABLE

13

195

Count of Correct Inference for H,: o = p gen for QAD: w =81, w = 21

Disturbance Term Variance

Values of p 25 49 81 121
0.1 95 89 94 87
0.3 97 94 93 91
0.5 94 92 91 88
0.7 92 90 86 80
0.9 91 88 87 86

(a) Full Models

Model and Disturbance Term Variance

Ba =0 B1 =
Values of p w = 81 w= 121 = 81 w= 121
0.1 93 92 87 92
0.3 88 88 88 88
0.5 80 80 83 80
0.7 82 76 73 76
0.9 87 86 82 86

(b) Models with One Zero Slope Parameter

Because of this tendency to overestimate the variability of p,
the MLE approach always leads to the correct inference when the
null hypothesis specifies p = pgn. By contrast, Table 13 displays
the count of the correct inferences for this null hypothesis for
QAD method. Panel a of Table 13 shows the counts for the full
models, and panel b shows the counts where one of the slope
parameters has been set to 0. The full models show that as the
disturbance term variance increases, the number of correct
inferential decisions with QAD decreases. The models with one
zero slope parameter show that as the network autocorrelation

Downloaded from smr.sagepub.com at UNIV OF PITTSBURGH on June 29, 2011


http://smr.sagepub.com/

196 SOCIOLOGICAL METHODS & RESEARCH

increases, the tendency is for the number of correct decisions to
decrease. In summary, with the exception of w = 25, the QAD
approach is not accurate in correctly accepting the null hypothesis
specifying the generating value of p.

In estimating p and determining whether or not there is a
network autocorrelation problem to be addressed, QAD is clearly
inferior to MLE. This, together with the Monte Carlo results
presented above, suggests that the quick and dirty approach does
not suffice when one is considering models with network
autocorrelation. Although MLE is superior to QAD, there is the
nagging problem that, as an estimation method, it badly over-
estimates the sample variability of p. Ideally, it would be useful if
a legitimate method of deflating this tendency could be
established.

CONCLUSION

As MLE is the preferable estimation strategy, our recom-
mendation is to use it on all occasions rather than QAD or OLS.
We are less certain about a recommendation concerning the
overestimation of the variability of p under MLE. If the MLE
estimate of p is equal to or above 0.3, then we feel confident that
the inference concerning the presence of network autocorrelation
as a “network effect” will be correct. For p <0.1, the inference will
state (correctly, in the main) that no network autocorrelation
effect is present. For 0.1 < p = 0.3 the results will be equivocal. At
the high end of this range, there will be cases where there is a
network effect, but MLE will lead to an inference that there is no
such effect. We suggest that MLE be used anyway, so that the
estimation of 8 and w, and inference concerning their values, will
have a sounder basis. Unless a theory predicts a network effect,
little will be lost. But when such a prediction is made,”’ the
inability of MLE to detect a network effect—when it is present—
becomes serious.”®

We have barely scratched the surface with these simulations.
Apart from a broader range of values for the 8; and different
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distributions of X, other avenues of exploration appear im-
portant. One is to allow variation of N and another is to explore
W matrices with different structures. Both have been tackled by
Dow et al. (1982) for the network disturbances models, and
similar explorations will be important for network effects models.

NOTES

1. More precisely, foryi = XiB + €, the € and ¢; are assumed to be drawn independently
from normal distributions of mean 0 and variance w: € ~ IN (0, wl).

2. This example is particularly vivid, as the hypothesis relating fertility and
population density is widely accepted, largely because of an early OLS analysis. The
evidence in Doreian (1981) of different inferences stemming from either taking or not
taking spatial autocorrelation into account is much less vivid.

3. “Network autocorrelation” will be used here as a general term to denote all forms
of autocorrelation, other than time-series models, where there are interdependent data
points. This includes spatial autocorrelation as a special instance.

4. Doreian (1982) considers the linear model with both a network disturbance term
and a network effects model, but such a model is not considered here.

5. Strictly, w = (1/N) yA’'MAy from the log-likelihood function. However, this is a
biased estimator, although equation 6 corrects for this bias.

6. In principle, there are many ways to construct W. We have stayed close to one
particular empirical instance of interdependent data points. So, through the runs, N = 64.

7. InDoreian (1981) there are estimators of w for different data sets of 22.9 (Table 4),
49.78 (Table 2), and 126.4 (Table 1). These are close to 5°, 72, and 112, and we added the
value of 9° to complete the sequence.

8. The total number of tables that could be reported for these simulations is around
140. Obviously, they cannot all be included. So we present some and outline the form of
the remaining tables in relation to those included here.

9. It is about 16% above the actual standard deviation (whereas the QAD report is
about 21% below its true value, and OLS is 7% below its true value).

10. We would like to claim this was built into the design but, in fact, it was fortuitous.
It is reasonable that some configurations are impervious to network autocorrelation and
others are sensitive. Both are featured into one (generic) set of exogenous variables used in
this simulation.

11. For example,

w 25 49 81 121

a(By) 0.018 0.026 0.033 0.040

(MLE) R
6(8)) 0.026 0.034 0.041 0.047

12. There is a slight upward drift in the bias from 0.0002 (for p = 0.1) to 0.0044 for
(p = 0.9), but it seems inconsequential relative to the magnitude of the coefficient and its
estimates.
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13. Again, there is a slight upward drift in the mean reported standard error from
0.0482 to 0.0551. This too seems inconsequential, although in other empirical situations
this may not be the case.

14. Although the decrease from 0.0690 to 0.0638 is probably inconsequential also, it is
interesting that the variability in B‘ decreases with p.

15. There is a slight upward drift in mean (ﬁz) with MLE but, like earlier drifts, it is
numerically small for this model with this regime.

16. If the regression is restricted such that the fitted plane passes through the origin, we
have MRSE = 1.23 SDE +0.0088 p. Note that each pair of data values has a corresponding
value of p. For this analysis, p is a variable, ranging across runs, and is not a constant.
Also, as each run is completely independent of every other run and batches of 100 runs are
independent of other batches, we do not need to take into account network autocor-
relation in these crude summaries.

17. The intercept of -0.00004 is ignored.

18. With the data ordered by SDE, a regression of MRSE on SDE has a low
Durbin-Watson statistic suggesting curvilinearity.

19. We detail consideration of p later in the article.

20. One exception to the comparable quality of MLE and QAD can be discerned for
the parameter B, where, perhaps, MLE is marginally superior to QAD. One exception to
the inferiority of the OLS performance is found with the estimates concerning .. But, in
general, the message is clear: OLS is very unreliable and, thus far, MLE and QAD are
comparable in inference decisions concerning the actual parameter generation values.

21. With tables corresponding to Tables 2 and 4 through 7 for each of these runs, we
have too many to present here and resort to a verbal summary, together with a table of root
mean square errors.

22. Of course, the bias for OLS follows the pattern described earlier in this section.

23. Thisis with Ho: @ = B2 =-0.3, the kind of hypothesis that is unlikely to be tested, as
theories are seldom powerful enough to instate a nonzero parameter value. Even so, if such
a hypothesis were offered, it would be rejected 7 times in 100 even when true.

24. For QAD, mistaken inference (at o = 0.01) ranges between 9 and 14 times in 100.
The declared value of @ = 0.01 may not actually be the one operative.

25. The RMSE for the estimates of p, corresponding to the data given in Table 7, are
as follows:

.1 3 .5 17 19
MLE 0.0263 0.0283 0.0173 0.0112 0.0051
QAD 0.2087 0.1858 0.1661 0.1257 0.0497

26. This is not solely a virtue, as this is due partly to an overestimate of the sample
variability.

27. Such instances do exist (see Burt and Doreian, 1982).

28. Our attempts to generate a relation between SDE and MRSE for the MLE method
have not been successful. Rather, they do not lead to useful advice. Combining the runs for
all the full models for p > 0, we can establish via regression methods that

MRSE = 0.053 + 6.38 SDE - 111.0 (SDE)? - 0.040 p R%? =99
(0.005) (0.438) 13.17) (0.005)
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Then for the models with a slope parameter set at zero, a similar operation yields:

MRSE = 0.134 + 2.445 SDE - 38.28 (SDE)2 - 0.124 p  R?*=.97
(0.008) (0.693) (12.63) (0.008)

Such instability across empirical conditions cannot provide the basis for a policy of
adjusting the MLE standard errors. In part, this may be due to the collinearity of SDE and
(SDE)’. Although ridge regression may reduce some of this instability, we doubt that this
is the best avenue for pursuing the relation between SDE and MRSE for the maximum
likelihood method.
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